MATHEMATIQUES 2025 - 2026

3 Réduction d’endomorphismes (1)

« Les chaussures sont un instrument pour marcher, les maths sont un instrument
pour penser. On peut marcher sans chaussures, mais on va moins loin. »

Jean-Marie Souriau (1995)
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¢ Introduction — Etant donné un endomorphisme u d'un K-espace vectoriel E de dimension finie 7, on
cherche a déterminer une représentation matricielle de u de la forme la plus simple possible pour répondre
a des objectifs aussi variés que le calcul des puissances successives, la résolution de systémes différentiels
linéaires, la résolution d’équations matricielles, la recherche du commutant...

Réduire 'endomorphisme u revient au fond a identifier au sein d’'une classe de si-
militude de .#,(K) donnée (I'ensemble des matrices représentatives de u) le ou les
représentants les plus adaptés a ces objectifs. Pour y parvenir, il nous faudra « casser »
I'espace E en somme directe de sous-espaces stables par u. En effet, dans une base
adaptée, la matrice obtenue sera diagonale par blocs. Nous serons donc amenés a
comprendre comment déterminer de tels sous-espaces et, s'ils existent, sous quelles
conditions obtenir des blocs triangulaires, voire diagonaux.

Dans un premier temps, et parce que la forme diagonale est de loin la plus avantageuse, Camille Jordan'
faisons '’hypothese qu’il existe une base 8 = (e, ..., €,) qui diagonalise u, c’est-a-dire pour laquelle la matrice
associée est diagonale :

A
Matg(u)= ol Ay,...,A4,€K
An

Nécessairement, u(e;) = A;e; pour tout i € [1, n]. En d’autres termes, e; € Ker(u — A;idg). De plus, puisque %
est une base, de tels vecteur e; ne peuvent étre nuls : les applications u — A;idg ne sont pas injectives, donc
non bijectives. Bref, det(z — A;idg) = 0! En conclusion, si une telle base existe, les coefficients de la matrice
diagonale sont a chercher parmi les valeurs de A pour lesquelles det(u — Aidg) = 0.

Réciproquement, connaissant de telles valeurs A, est-on en mesure de construire une base de diagonalisation?
Formulé autrement, peut-on décomposer E en somme directe de sous-espaces stables sur chacun desquels u
va agir telle une homothétie? La réponse sera hélas négative pour des endomorphismes ne respectant par
certains criteres, comme par exemple les endomorphismes nilpotents. La diagonalisation d'un endomorphisme
ou d'une matrice ne constitue pas en ce sens une réduction « universelle ».

Ce premier chapitre consacré a la réduction vise a énoncer des premiers criteres simples de diagonalisabi-
lité et de trigonalisabilité. Il sera complété d’'un deuxiéme opus ou1 nous verrons comment les polynémes
d’endomorphismes peuvent étre efficacement mis au service de la réduction.

1. Camille Jordan (1838 — 1922), un des grands contributeurs a la théorie de la réduction.



E Chap. 3 Réduction d’endomorphismes (1)

I 1| Eléments propres d’'un endomorphisme

Soient E un K-espace vectoriel, K désignant sauf mention contraire R ou C, et # un endomorphisme de E.

A —Valeurs propres, vecteurs propres et sous-espaces propres

— Définition 3.1 : Valeur propre, vecteur propre

¢ On dit que A € K est une valeur propre de u s'il existe un vecteur x non nul de E tel que u(x)=Ax.
¢ On dit alors que x est un vecteur propre de u associé a la valeur propre A.
* On appelle éléments propres de u les valeurs et vecteurs propres de u.

e Lorsque E est de dimension finie, on appelle spectre de u ’ensemble des valeurs propres de u dans K.
Il sera par la suite noté Sp(u).

Quelques remarques en vrac :
¢ Un vecteur propre n’est jamais nul! (sinon, tout scalaire serait valeur propre)

¢ En dimension finie, en notant M la matrice de u dans une base % donnée, x est un vecteur propre de u
associé a la valeur propre A ssi M X = AX avec X le vecteur coordonnées de x dans 93. On dira que X est
un vecteur propre de M associé a la valeur propre A.

¢ x estun vecteur propre de u si et seulement si la droite Vect(x) est stable par u.
Considérons maintenant un scalaire A et un vecteur x.

ux)=Ax < (u—2Aidg)(x)=0; <= xeKer(u—Aidg)

Comme x est non nul, cela revient a dire que Ker(u —Aidg) # {0g}, c’est-a-dire que u — Aidg n’est pas injective.
En particulier, 0 est valeur propre de u si et seulement si u n’est pas injective.

Définition 3.2 : Sous-espace propre
’»Soit A une valeur propre de u. On appelle sous-espace propre associé a A 'ensemble E;(u) = Ker(u—Aidg).

E;(u) est un sous-espace vectoriel en tant que noyau d’endomorphisme. Si A ¢Sp(u), alors E;(u)={0g}.

Exercice 1
| Déterminer les éléments propres d'une homothétie, d'un projecteur et d'une symétrie vectorielle.

Proposition 3.3
’»Soient u,v e ¥(E)tels que uo v =vo u.Alors tout sous-espace propre de u est stable par v.

Démonstration
| Soit A €Sp(u). Pour tout x € E;(u), u(x)=Ax, d’ ot u(v(x))=v(u(x))=Av(x). Ainsi v(x) € E;(u). [ ]

Lorsque deux endomorphismes u et v commutent, on pourra introduire I’endomorphisme induit par v sur
E,(u). Cette idée, riche de conséquences, sera développée ultérieurement.

Dans la preuve précédente, on notera qu’il n’est pas acquis que v(x) soit un vecteur propre de u : il se pourrait
que v(x)=0g.

Lemme 3.4

Deux sous-espaces propres associés a des valeurs propres distinctes sont en somme directe.
Autrement dit, si A # u, alors Ker(u — Aidg) N Ker(u — uidg) = {05}.

Démonstration
| SiA#uetxe€Ey(u)NE,(u), u(x)=Ax =ux. Donc(A—u)x =0g et méme x =0y puisque A # U. |

On généralise aisément ce résultat.
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Partie I - Eléments propres d’'un endomorphisme E

Théoréme 3.5
FLa somme de sous-espaces propres associés a des valeurs propres deux a deux distinctes est directe.

Démonstration
Montrons par récurrence sur p € N* que la somme de p sous-espaces propres d'un endomorphisme u
associés a des valeurs propres distinctes est directe.

(i) Initialisation - Il n'y a rien a démontrer pour p = 1; le résultat vient d’étre démontré pour p = 2.

(ii) Hérédité — Supposons la propriété établie pour p sous-espaces propres. Montrons qu’elle est encore
vraie pour p + 1 sous-espaces propres. Considérons pour cela 44, ..., 4,4, valeurs propres deux a deux
distinctes et (ey,...,e,11) € Ej, X ... X E;,,, vecteurs propres associés tels que :

eit-te,te, 1 =0 (%)
Ce qui nous donne, en applicant u :
Areg+-t+Ane,+ A 1650 =0 (4k)
Multiplions (x) par A, et soustrayons I'équation obtenue a () :

(M —=Aper+-+(Ap—Api1)e, =0

Lhypotheése de récurrence conduit alors a (A, —A,11)e; = (A2 —App)e=--=(A, —Ap41)ep, =0p.
Ce qui, compte-tenu du fait que les valeurs propres sont distinctes, donne A; =---=24,, =0.
En reportant dans I'équation initiale, il vient également A,,,; = 0. [ |

’» Corollaire 3.6

Toute famille de vecteurs propres associés a des valeurs propres distinctes est libre.

La concaténation de familles libres d’espaces en somme directe est libre. Il suffit alors de considérer pour

Démonstration
| chaque sous-espace propre une famille (e;) 2 un seul élément (non nul puisque c’est un vecteur propre). |

Corollaire 3.7
’»En dimension finie, un endomorphisme ne peut admettre plus de n = dim(E) valeurs propres.

Démonstration
| Une famille libre ne peut contenir plus de dim(E) vecteurs. |

En dimension infinie, il peut cependant exister une infinité de valeurs propres.

Exemple 1
Soit ¢ : R[X]— R[X] définie par ¢(P)= P’. Déterminons les éléments propres de ¢.

AP #0, ¢(P)=AP <= 3P#0, AP=P’
Pour des questions de degré, seul 0 est valeur propre et Ey(¢) = Ker ¢ =Ry[X] = Vect(1).

Exemple 2
Soit iy : € °°(R) — 6 °°(R) définie par y(f)= f’. Déterminons les éléments propres de 1.

Af#0, Y(f)=Af < 3f#0, Af=f

Aucune condition ne porte sur A et nécessairement, f = x — Ce’* avec C €R.

Ainsi, tout réel A est valeur propre de ) et E;(1)) =Ker(¢ — Aidg) = {x — Ce** | C e R} = Vect(x — e**).
On en déduit a cette occasion que la famille (x — e*¥), g est libre. A retenir : identifier une famille de
vecteurs comme une famille de vecteurs propres peut s’avérer efficace pour justifier la liberté de la famille.
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n Chap. 3 Réduction d’endomorphismes (1)

B - Polynéme caractéristique d’'un endomorphisme

On suppose désormais E de dimension finie. Les notions de rang et déterminant pourront donc étre employées.
dx #0g, u(x)=Ax

Ker(u — Aidg) # {05}

u—Aidg non injective

A valeur propre de f

u—Aidg non bijective (dimension finie)
det(u—Aidg)=0 <= det(Aidg—u)=0

1111d

La détermination de I'’ensemble des valeurs propres d'un endomorphisme en dimension finie peut donc «en
théorie » se ramener a un simple calcul de déterminant et a une recherche de racines d'un certain polynéme.

Commencons par définir le polyndme caractéristique d'une matrice. La définition donnée nous oblige a
travailler avec des matrices a coefficients dans le corps des fractions K(X). La théorie du déterminant exposée
sur le corps K reste valable dans K(X).

Théoréme / Définition 3.8 : Polyndme caractéristique d’'une matrice

Soit M € .4 ,(K). On appelle polyndme caractéristique de M et on note généralement y,, le polynéme
XM= det(XIn — M)

Démonstration
X—my, —Mmy —My,p
. . n
—m X—m - :
pu=detX1,—M)=| ~Te ST = D €] |Xboii—mow) €KIX].  m
: . . _mn—l n O'GG,L i=1
—My o My n—1 X— My n

Le polynéme caractéristique est un invariant de similitude.

Proposition 3.9
’»Soient A, B e #,(K).Si A et B sont semblables, alors y4 = yp.

Démonstration
Soient A, B € .#,(K) et P € GL,(K) telles que B= P~'AP. Alors,

x5 =det(XI,—B)=det(XI,— P 'AP)=det(P')det(X I, —A)det(P)= y,

— Théoréme 3.10 : Polynéme caractéristique d'un endomorphisme

Soit u € Z(E), ou E est un K-espace vectoriel de dimension finie. On appelle polyndme caractéristique
de u et on note généralement y,, le polyndme caractéristique de toute matrice représentative.

— Théoréme 3.11
Soit u € Z(E). A est valeur propre de u si et seulement si A est racine de y,,.

Exemple

Soit u définie sur R® par u(x, y,z)=(2y —z,3x —2y,—2x + 2y + z). Déterminons ses éléments propres.

0o 2 -1
En notant M la matrice de u dans la base canonique, ilvient M =3 -2 0
-2 2 1

Apres quelques calculs, Sp(M) = {1, 2,—4} puis E; = Vect((1,1,1)), E, = Vect((4,3,—2)) et E_, = Vect((2,—3,2)).
Notons que I'on obtient par concaténation une base de R3. Quelle est la matrice de u dans cette base?

Remarquons que 0 € Sp(M) si et seulement si det(M) =0, c’est-a-dire si et seulement si M n’est pas inversible.

Notons aussi que par invariance du déterminant par transposition, pour tout M € .#,,(K), Sp(M)=Sp(M ).

© Mickaél PROST Année 2025/2026



Partie I - Eléments propres d’'un endomorphisme B

Exercice 2
n

Soient M € .4, (C) et a € C tels que pour tout j €[1, n], z m; ;j = a. Montrer que a € Sp(M).
i=1

Théoréme 3.12 : Propriétés du polyndome caractéristique
Soit M € #,,(K). Le polyndme y,,; = det(X I,, — M) est de degré n et unitaire. De plus,

av = X" =Te(M)X" " +---+(=1)" det(M)

Démonstration
Rappelons que, .
Zu=det(XI,=M)= > &(@)] [(X800)i — Mor).i)
oe6, i=1
oul'on anoté §; ; le symbole de Kronecker.

e Comme annoncé, y, est bien un polynéme, de degré au plus n.

* Mais a y regarder de plus pres, le seul terme de degré n apparait dans la somme lorsque pour tout i
compris entre 1 et n, o(i) = i, c’est-a-dire lorsque o = id. Comme &(id) = 1, le terme correspondant
n

dans la somme est l_I(X —m, ;). ¥, estdonc de degré n et unitaire.
i=1

n
e Aucun terme de la forme l_I(X O(i)i — Mg(i)i) ne peut étre de degré n — 1. Il faudrait pour cela que la
i=1
permutation o fixe exactement n — 1 valeurs, sans fixer la derniere. La seule contribution de degré n—1
n

provient donc du développement du terme l_[(X —m;;)=X"—(my+myr+--+ mn,n)X”_1 +eee
i=1
On retrouve bien I'opposé de la trace de M.

e Le terme constant s’obtient en calculant y,(0) = Z e(o)
oe6, i=1

(=mo(p),1) = (—1)" det(M). m

n

Quel est le nombre de racines de y,, donc de valeurs propres de ©?

Proposition 3.13

¢ Si E estun C-e.v. de dimension n alors u € £ (E) admet exactement n valeurs propres comptées avec
leur ordre de multiplicité.

e Lorsque E est un R-e.v. de dimension n, u € £(E) en admet au plus n.

Exemple

-1 0 1 X

SoitA:[0 1].;(A:'X _1':X2+1.Déslors, Spc(A)={=£i} et Spr(4)=a2.

Plus généralement, pour deux corps K et K’ tels que K c K/, Spi(u) C Spg(u).

Définition 3.14 : Ordre de multiplicité

On appelle ordre de multiplicité de la valeur propre A de u, 'ordre de multiplicité de A en tant que racine
du polynéme caractéristique de u.

Rappelons que a est une racine de P € K[ X] d’ordre de multiplicité p si et seulement si une des deux propriétés
équivalentes suivantes est vérifiée :

(i) Tlexiste Q€K[X]tel que P =(X—a)’Q (i) P(a)=P'(a)=---=PP(a)=0.
Exemple

| xu=(X—1)(X—2)?alors 1 est valeur propre simple de u et 2 valeur propre double.

Année 2025/2026 Lycée Louis-le-Grand - MP



n Chap. 3 Réduction d’endomorphismes (1)

— Proposition 3.15
Si M € #,(R), deux valeurs propres complexes conjuguées de M ont méme ordre de multiplicité.

— Proposition 3.16

Soient u € Z(E) et F un sous-espace vectoriel de E stable par u.
Alors, le polynome caractéristique de I'endomorphisme induit y,,,. divise y,.

Démonstration
Considérons une base % de F que I'on compléte en une base %’ de E. En posant n = dim(E) et p = dim(F),
_ Matgg(lﬂp) B _ XIp—Matgg(u“:) —B
Mat g/ (u) = 0 c etdonc, yy = 0 XI,_,—C
C’est un déterminant triangulaire par blocs. Ainsi, y,, =y, x det(X1,,_, — C), donc y .| xu- |
Théoréme 3.17
’»Soit A une valeur propre de u d’ordre de multiplicité m(A). Alors, 1 < dim(Ker(u — Aidg)) = dim E; < m(A).

Démonstration
| Soit A une valeur propre de u. Posons p =dim(E,).
|

e Il existe x #0f tel que u(x)=Ax. Comme E; #{0g}, p=>1.

* De plus, Ej(u) est stable par u. Lendomorphisme induit par u a pour matrice Al,, dans n'importe
quelle base. Son polynéme caractéristique est (X —A)”.
En vertu du lemme précédent, (X —A)? divise y,,, ce qui nous assure que p < m(A). |

Corollaire 3.18
’»Si A est racine simple, alors Ker(u — Aidg) est de dimension 1.

Exemple
0 2 -1
SiM=|3 -2 0 |,Sp(M)={1,2,—4}. Les sous-espaces propres de M sont donc des droites vectorielles.
-2 2 1

Exercice 3
Soit Ae ./, (K).

(i) Comparer les polyndmes caractéristiques de A et 2A. Que dire si A et 2A sont semblables?

(ii) On suppose que A € GL,(K). Comparer les polyndmes caractéristiques de A et A~!, de A et Com(A).

I 11 | Diagonalisation d'un endomorphisme

Par la suite, u désignera toujours un endomorphisme du K-espace vectoriel E de dimension finie 7.

I— Définition 3.19 : Diagonalisabilité d'un endomorphisme

L'endomorphisme u est dit diagonalisable s’il existe une base de E dans laquelle sa matrice est diagonale.

Ay
Dans une telle base, la matrice de u est de la forme avec A; valeur propre de u.
An
Diagonaliser un endomorphisme, c’est déterminer une base de E constituée de vecteurs propres de u.
Quelques remarques :
¢ Les A; apparaissent dans la matrice précédente autant de fois que leur ordre de multiplicité.
¢ La matrice de u dans une base quelconque est alors semblable a une matrice diagonale.

© Mickaél PROST Année 2025/2026



Partie II - Diagonalisation d'un endomorphisme

Exemples
| idg est diagonalisable; un projecteur est diagonalisable.

l— Définition 3.20 : Diagonalisabilité d’'une matrice

Par analogie, une matrice est dite diagonalisable si elle est semblable a une matrice diagonale.

Rappel : Deux matrices semblables ont méme trace, méme déterminant et méme polyndéme caractéristique
donc mémes valeurs propres.

Attention, une matrice (ou un endomorphisme) n’est pas toujours diagonalisable! De plus, 'ensemble des
matrices (ou des endomorphismes) diagonalisables n’est pas stable par addition, ni par composition.

Exemple

Soit M = [ ] Clairement, Sp(M) = {0}. Si M était diagonalisable, M = P x [0 0] xP7l= [0 0]. Absurde!

01
00 00 0 0

Remarquons par ailleurs que Ey(M) = Vect([(l)D.

A quelle condition un endomorphisme est-il diagonalisable ? De fagon grossiere, il faut et il suffit qu’il admette
suffisamment de vecteurs propres pour pouvoir former une base de E et ainsi construire une matrice diagonale.
C’est exactement ce qu’expriment les théoremes suivants. Mais rappelons auparavant que :

P déf.
E=F < VxeE x,..,x))eF x-xEF, x=x++x,
i=1
prop ’ .
< laconcaténation de bases de F, ..., F, est une base de E

p p
g Z E; est directe et dim(E)= Z dim(F))

i=1 i=1

Théoréme 3.21 : Condition nécessaire et suffisante de diagonalisabilité (1)

L'endomorphisme u est diagonalisable si et seulement si E = @ E,.
AeSp(u)

Démonstration
Raisonnons par double implication :

Soit (ey, ..., e,) une base de E obtenue par concaténation de bases des sous-espaces Ej.
Par définition, u(e;) = A;e; donc la matrice représentative de u dans cette base est diagonale.

Réciproquement, si (e, ..., e,) est une base de vecteurs propres de u, tout vecteur de E s’écrit bien
comme combinaison linéaire d’éléments des sous-espaces propres Ej_ . Par ailleurs, cette décomposi-
tion est unique puisque ces sous-espaces sont en somme directe (cf. section I). |

— Corollaire 3.22

L'endomorphisme u est diagonalisable si et seulement si dim(E) = Z dim(E,).
A€Sp(u)

— Théoréme 3.23 : Condition nécessaire et suffisante de diagonalisabilité (2)
Lendomorphisme u est diagonalisable ssi y,, est scindé et pour tout A € Sp(u), dim Ej = m(A).

Année 2025/2026 Lycée Louis-le-Grand - MP



n Chap. 3 Réduction d’endomorphismes (1)

Démonstration
Raisonnons la encore par double implication.

Notons ; la dimension de E,,. La matrice de u dans une base de diagonalisation est de la forme :

My,
M=
Al

p-ap
Ainsi, y, =y =(X—2A)% x---x (X —Ap)"‘ﬂ. Le polynéme caractéristique de u est donc scindé et
I'ordre de multiplicité de A; vaut dim(E),) et ceci, quel que soit i €[1, p].
Supposons que y,, est scindé et que m(A)=dim(E,) pour toute valeur propre A. On a alors :
dim(E)=deg(z,) = >, mA)= > dim(E)

SANAe 5 Esplu) AESp(u) u

— Corollaire 3.24
Si y, n'est pas scindé, u n’est pas diagonalisable.

— Théoréme 3.25 : Condition suffisante de diagonalisabilité

Si y, estscindé et n'admet que des racines simples, alors u est diagonalisable.

Démonstration
| En effet, si A est valeur propre simple de u alors dim E; =1 = m(A). [ |

Pour les 5/2, rappelons comme résultat supplémentaire que toute matrice symétrique réelle est diagonalisable
au moyen d'une matrice de passage orthogonale.

Plan de diagonalisation — (hors cas particulier)

© Ftude de la diagonalisabilité de u.
¢ On détermine y,,.
* Si y, n'est pas scindé, u n'est pas diagonalisable. Dans C, y,, est toujours scindé.

* Si y, estscindé, on compare dim E; et m(A). A ce stade, il n’est pas utile de déterminer une base de E;.
On remarquera que dim E; = n —rg(M — AI,). (théoréeme du rang)

® Diagonalisation de u lorsque c’est possible.
On détermine une base de E, pour chaque valeur propre en résolvantl’équation M X = AX et on concaténe
les bases obtenues.

Exemples
Les matrices suivantes sont-elles diagonalisables? Si oui, les diagonaliser.

5 1 -1 8§ -1 2 0O 1 0
A=|(2 4 =2(; B=| 7 0o 2|; C=|-1 0 1
1 -1 3 -18 3 4 0 -1 0

24=(X—2)(X—4)(X—6), Adiagonalisable. y 3 = (X —2)(X —1)? et dim E; = 1 donc B n’est pas diagonalisable.
¢ =X(X?+2), C diagonalisable dans .#5(C) mais pas dans ./3(R).

Pour finir, on notera que diagonaliser un endomorphisme revient a I'exprimer comme une combinaison
linéaire de projecteurs.

Exercice 4
Soient u € Z(E) diagonalisable et A € Sp(u). On note p,, le projecteur spectral associé a A, i.e. la projection
sur E,(u) parallelement a la somme des autres sous-espaces propres. Montrer que p; est un polynéme en u.

Exercice 5
| Trouver le spectre d'une matrice compagnon et une condition nécessaire et suffisante de diagonalisabilité.
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Partie III - Trigonalisation d’'un endomorphisme n

B 111 | Trigonalisation d’'un endomorphisme

1 — Définition

— Définition 3.26 : Trigonalisabilité

e Un endomorphisme u de E est dit trigonalisable s’il existe une base de E dans laquelle la matrice de
u est triangulaire supérieure.

* Une matrice est dite trigonalisable si elle est semblable a une matrice triangulaire supérieure.

— Théoreme 3.27

u est trigonalisable si et seulement si son polyndme caractéristique est scindé.

Toute matrice est donc trigonalisable dans .#,,(C). Ainsi, pour toute matrice M € .#,(C), il existe une matrice
triangulaire T (dont la diagonale est constituée par les valeurs propres de M) et P inversible telles que :

)(,1 X X
T=P'MP=|¢ . «
0 0 A,

Démonstration

Supposons I'endomorphisme u trigonalisable. Il existe donc une base de E dans laquelle la matrice
de u est de la forme :

A‘l X X
0 . x
0 0 A,

n
Son polyndme caractéristique est alors | |(X —A;), il est scindé.
i=1
Raisonnons par récurrence sur la dimension de E.

¢ Initialisation - Le résultat est vrai en dimension 1 puisque toute matrice représentative de u est
triangulaire supérieure.

» Hérédité — Supposons le résultat établi au rang n — 1, montrons qu’il est encore vrai au rang .
Le polynéme caractéristique de u étant scindé et de degré n > 1, il admet au moins une racine A. En
notant e; un vecteur propre associé, que 'on compléte en une base 8 =(ey, ..., e,) de E, la matrice
de u dans cette base est de la forme :

M= [’1 - ] ott M’ € M,_,(K)

0 M’

xm = (X —=A)ya. ym étant scindé, par hypothése de récurrence, la matrice M’ est trigonalisable.
On peut alors écrire T = P"~'!M’P’ avec P’ € GL,,_,(K). Considérons alors la matrice :

1 0

P:[0 p,]eGLn(K)
En effectuant un produit par blocs, il vient :

1 {r 0 A~ J1 0] _|A ° N

P MP_[O p~t{lo M’||lo P’ |0 P7'MP/|T|0 T

Cette derniere matrice est bien triangulaire, ce qui achéve la démonstration par récurrence. |
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m Chap. 3 Réduction d’endomorphismes (1)

Proposition 3.28

La trace d'un endomorphisme est la somme de ses valeurs propres (complexes) et le déterminant son
produit.

On rappelle que pour toute matrice M € #,,(K) :
A =X"—Te(M)X" 4. 4+ (=1)" det(M)
11 suffit de développer le polynéme caractéristique et d’identifier :

A =X = A1) % x (X =Ap) = X" (A 4o+ Ap) X et (1) A X X A
[ — ~———

=Tr(M) =det(M)

n
La trigonalisabilité de M € .#,,(C) nous assure également que pour tout k € N, Tr(M*) = Z /11.“ = Z m(A)AF.
i=1 2€Spc(M)

2 - Trigonalisation effective dans le cas o1 n =2

On suppose ¥, scindé avec u € Z(E) et dim E =2. On écrit alors y,, = (X —A; ) (X —A,).

O Si A, #A,, comme ), est scindé a racines simples, u est diagonalisable.
Dans une certaine base, )
Ay O
Mat(u)= 0 Az]
® SiA; =A,=2A, u est-elle diagonalisable?
Sic’estle cas, )
A0

— -1_
M=PDP —P-O 2

] Pl=2L

Et u vaut alors Aidg.
Sinon, dim E; = 1. Soit e; € E;, e; # 0 et on compléte la famille libre (e;) en une base (e}, e,) de E.

Dans cette base,
A X
Mat(u) = [0 A]

On peut toujours choisir e, de sorte que Mat(u) = [g /11]

3 - Trigonalisation effective dans le cas ou1 7 =3

On suppose y,, scindé avec u € Z(E) et dim E = 3. On écrit y,, sous laforme y, =(X —A1)(X —A,)(X — A3).

O Siles A; sont distincts, y, étant scindé a racines simples, u est diagonalisable.
Dans une certaine base,

A, 0 0
Mat(u)=({0 A, O
0 0 A

@ Si A, estracine simple et si A, = A3, deux possibilités :

* soitdim E,, =2 et u est diagonalisable.

* soitdim E, =1 et alors, u n’est pas diagonalisable.
On choisit alors e) € E), et e, € E;, non nuls que I'on complete en une base (e, e;, e3) de E.
Dans cette base,

Al 0 X
Mat(u)={ 0 A, x
0 0 A
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Partie IV - Endomorphismes nilpotents

A, 0 0
On essaie souvent de choisir (e;, e5, e3) de sorte que Mat(u)=[ 0 A, 1
0 0 A

® A estracine triple. La aussi, plusieurs possibilités :
¢ sidim E, =3 alors u est diagonalisable. f = Aidg.

* sidim E, =2 et alors on compléte une base (e, e;) de E; en une base (e, e;, e3) de E.
Dans cette base,

}(1 0 X
Mat(u)=[0 A, x
0 0 A

¢ sidim E; =1, la question est plus délicate et sera abordée en fin de chapitre.

Exercice 6
8 -1 2
Réduire la matrice M = | 7 0o 2.
—-18 3 —4

B 1V | Endomorphismes nilpotents

Dans cette partie, E désigne toujours un K-espace vectoriel de dimension finie 7.

Définition 3.29 : Endomorphisme nilpotent

Un endomorphisme u de E est dit nilpotent s'il existe k €N tel que u* = 0.
On appelle alors indice de nilpotence de u le plus petit de ces entiers p.

Sil’on note p € N* I'indice de nilpotence d'un endomorphisme nilpotent u, u” =0¢(g) et u?~! # 04 g).

On définit de facon analogue la propriété de nilpotence d'une matrice.

Exemple
3 -3 -1
Lamatrice | 2 —2 -2| estnilpotente. Quel est son ordre de nilpotence?
-1 1 -1

Proposition 3.30
’»L’indice de nilpotence d'un endomorphisme nilpotent est inférieur ou égal a dim(E).

Démonstration
Soit p I'indice de nilpotence d'un endomorphisme nilpotent ©. Comme u”~! #0 « (k) il existe x € E tel que
uP~1(x)# 0. Montrons alors que la famille (x, u(x),..., uP7(x)) est libre.
Soit, pour cela, (Ag,...,A,_1) EKP tel que Agx + A, u(x)+---+2,_, uP2(x)+ Ap_ uP Y x)=0p.
On applique successivement u, u?, ..., u?~! de telle sorte que, par nilpotence,
AoX + 2 u(x)+ Ay uP 2 (x)+ Ay uP 7 (x)=0g
Aou(x)+ A u(x)+ -+ A, o uP (x)=0p

AouP 2 (x)+ 2 uPHx)=0p

AouP Y (x)=0g

Comme uP~(x)# 0, on trouve A, = 0 puis, en remontant, on a successivement Ay =21, =---= Ap-1=0.
Nous avons une famille libre de p vecteurs. Nécessairement, p < dim(E). |
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Chap. 3 Réduction d’endomorphismes (1)

Ce résultat appelle plusieurs remarques. D'une part, on a obligatoirement u" =0 ¢g) puisque p < n. D’autre
part, sil'indice de nilpotence est maximal, c’est-a-dire s'il est égal a n alors la famille de vecteurs introduite dans
la preuve est une base de E. On peut alors écrire la matrice de u dans la base (/" !(x), u"2(x),..., u(x), x):

o 1 O - 0
0 :
: A |
0 - -~ 0 0

Cette matrice est triangulaire supérieure et elle n’est clairement pas diagonalisable. Nous allons montrer plus
généralement que 0 est la seule valeur propre complexe d’'un endomorphisme nilpotent.

Proposition 3.31
’»Un endomorphisme est nilpotent si, et seulement s'il est trigonalisable et si 0 est sa seule valeur propre.

Démonstration

Démontrons ce résultat par une approche matricielle.

Supposons la matrice M nilpotente. Quitte a travailler dans C, soit A une valeur propre de M et X un
vecteur propre associé. M X = AX et une récurrence simple donne M"X = A" X =0. Comme X #0, il
vient A = 0. La seule valeur propre complexe de M est 0. y); = X" est scindé sur R comme sur C, la
matrice est trigonalisable.

0 x x

Si M est trigonalisable et de valeurs propres toutes nulles, alors M estsemblablea T'=|: .. 4.

0 --- 0
Or T" =0 (vial’endomorphisme de K" canoniquement associé). Il s’en suit que M " =0. |
Exercice 7
-2 2 3
Trigonaliser la matrice M = |-2 1 2
-3 2 4
B V| Applications classiques de la réduction
A - Calcul de puissances
Soient A € ./ ,(K) et p € N*. On cherche a calculer A? par réduction de A.
O Si A est diagonalisable alors il existe P € GL,,(K) tel que :
A, 0 0
D=P'APavecD= | .. (| ol P estconstituée de vecteurs propres de A.
0 0 A,

Par récurrence, AP =(PDP~1)? = PDP P! avec DP =diag(A},...,A}).
® Si A est trigonalisable alors il existe P € GL,(K) tel que :
A’l X X

T=P'APavecT=|g . «
0 0 A,

Donc A? =(PTP~ )P =PTPP~!. Le calcul de T” est cependant plus délicat que dans le cas précédent.

A X x A 0 0 0 x x
T=19 . x|=D+NavecD=|g . ogl|etN=|g . «
0 0 A, 0 0 A, 0 0 0
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N est nilpotente donc N” se calcule aisément, tout comme D”. A condition que N et D commutent, on
peut utiliser la formule du bindéme... Lorsque n =2 ou n = 3, on cherchera généralement T sous la forme :

11 A 0 0
0 A ou 0 u 1
0 0 u

Les puissances de T peuvent alors se calculer facilement.

B - Suites récurrentes linéaires
1 — Suites récurrentes linéaires d’ordre 2

On considére une suite (u,,), oy Vérifiant la relation de récurrence au, ,» + bu, ;1 +cu, =0aveca,b,c eRet
a # 0. On suppose que u, #; € R. On chercher a exprimer u,, en fonction de n.

Posons pour cela X, = Unit) x =Mz | = 1 = G Un = —a X, =AX, avec A= —a
"L [T [ o Lo 1oof
Par récurrence, X,, = AX,,_; = A’X,,_,=---=A"X,= A" Zl . Réduisons A pour déterminer A”.
0
X+L2 ¢ s b c )
A= _1“ ;‘(:X +ZX+E donc yA(X)=0<=aX“+bX+c=0.

D’apres ce qui précede, deux possibilités :

(i) A admet deuxracines simples A; et A,. A est diagonalisable et A= P [)(L)l )(L) ]P‘l.
2

u A0

D - x, =p|1
onc [ ", n 0 A
Lorsque les racines ne sont pas réelles, elles sont conjuguées :

] P~1X,. Ainsi, il existe @, € C tel que pour tout n €N, u,, =aAl + S A},

I, f)eC?  up=ar+pA"
Comme u, €R, u, =, conduit 2 8 =a. En posant A = pe'?,

VrneN, u,=p" (aeine +aein9) =2p"Re(ae'™)= p"(Acos(n@)+ Bsin(nh)) avec A, B€R

(ii) A admet une racine double A. Comme A# AL, A=P [g ﬂ P71

Upyil AT pA . n
Donc ", =X,=P 0 An P~ X,.ll existe @, B €R tel que pour tout n €N, u,, =(a+np)A".

— Théoréme 3.32 : Suite récurrente linéaire d’ordre 2
Soit (u,),,cy Une suite vérifiant la relation de récurrence u,» =au,,.;+bu, (¥

 Sil’équation posséde deux racines réelles distinctes r; et 1y, il existe a, 8 € R tels que :
VneN, u,=aA]{+pA;
¢ Sil’équation posséde une racine double r, il existe @, B € R tels que:
VrneN, u,=(@+np)A"
* Sil'équation posséde deux racines complexes conjuguées pe*i?, il existe a, 8 € R tels que :
VneN, u,=p"(acos(nf)+psin(nh))

Lensemble des suites vérifiant la relation (x) est un espace vectoriel de dimension 2.
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m Chap. 3 Réduction d’endomorphismes (1)

2 — Suites récurrentes linéaires d’ordre p

On généralise aisément ce théoréeme a des suites récurrentes linéaires d’ordre supérieur.

— Théoréeme 3.33

Soient p € N* et (ay, ..., a,—;) € KP. Lensemble des suites vérifiant une relation de récurrence de la forme :

VREN, Upyp=ap  Upip1tapolppot--+agu, (¥

forme un espace vectoriel de dimension p.

Démonstration
Notons E,, I'ensemble des suites de KN qui vérifient la relation ().

* Montrons tout d’abord que E,, est un espace vectoriel.
— La suite nulle vérifie bien la relation de récurrence ().

— Soient (uy),ey €t (V) ey deux suites de E, et A € K. On pose alors w,, = Au, + v, pour tout n € N.
Montrons que (w,,),en € E,. On a pour tout n €N,

Uptp = ApaUpip—1tApoUnipot+ -t aolUy; VUpip=0ap_1Vntp—1 T Ap_2Vptp—2+--t+aoly
Donc pour tout n €N,

Wnip =AlUpip + Unyp = Ap1(Alpip1 + Vpip1) +--+ ao(Auy, + vy)

=ap\Wpip—1tap 2VWyyp o+ -+ agy,

* Montrons maintenant que E, est de dimension p en établissant un isomorphisme entre E,, et K”. Considé-
rons I'application ¢ : E,, — KP définie par ¢((u,),en) = (4o, ..., up—1). C’est tout simplement I'application
quia une suite de E), lui associe ses p premieres valeurs. Cette application est bien linéaire et toute suite de
E,, est entierement définie par la donnée de p conditions initiales. Bref, ¢ est un isomorphisme d’espaces
vectoriels, ce qui montre que E,, est de dimension p. |

Pour p =2, on retrouve le résultat du paragraphe précédent.

Essayons d’obtenir une base de E,,. L'idée consiste la encore a transformer notre relation de récurrence scalaire
d’ordre p en une récurrence vectorielle d’ordre 1. Posons pour cela :

ay,_1 Ay ... ... Qo
Z"“H T 0 o
-2
X, = nfp eKP: A= 0 1 0o ... 0 G//lp(K)
“n 0O ... 0 1 0

Comme X,,,; = AX,, pour tout entier n, on trouve X,, = A" X;. Ceci nous invite a réduire A pour calculer A”.
On pourra remarquer que le polynéme caractéristique de A n’est rien d’autres que X” —a,,_; X =l —qy.

Supposons maintenant que A admet p valeurs propres simples. A est alors diagonalisable. Il existe donc
Alr-oes Ap €K™ et P € GL,(K) tels que :

un+p—1 An up—l
1
Untp—2 _ Up—2
. =pP. . . p 1, .
A
Uy P Ugy

u, est donc une combinaison linéaire des A" etl’ensemble des suites vérifiant la relation (x) est :
Vect(n — Al,...,n— AZ)

Comme la famille est génératrice et qu’elle comporte p = dim(E,,) vecteurs, c’est bien une base de E,,.
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C - Equations différentielles linéaires a coefficients constants

Un systeme d’équations différentielles linéaires d’ordre 1 a coefficients constants est un systéme de la forme :

x(8)=ay X1 () + -+ a1, X, (1) + by
X (1) = A1 X1 (£)+ -+ + Az X (1) + by

X, (1) = a1 X1 (1) + @pp Xn(£) + by
Il peut s’écrire sous la forme X’(¢)= AX(t)+ B avec, pour tout ¢ dans un certain intervalle I C R,

x1(7) ap; ... Qg b,
X()=| : |[eK"; A=] : : |ey(K); B=|:|eK"
xn(t) anp1 .- Qpn bn
Nous étudierons plus en détail ces systemes linéaires dans un chapitre ultérieur; nous exprimerons en particu-
lier la solution générale a I'aide de I'exponentielle matricielle et justifierons I'existence et 'unicité de la solution

dans le cas d'un probleme de Cauchy (théoreme de Cauchy-Lipschitz dans sa version linéaire). Retenons pour
le moment que I’on peut facilement exprimer les solutions d'un tel systéme en réduisant la matrice A.

1 - Résolution de X’ = AX lorsque A est diagonalisable

Soient A € ./,(K) une matrice diagonalisable et P € GL,(K) telle que D = P! AP = diag(A,,...,A,,).
X'=AX < X'=PDP'X < P7'X'=DP7'X < Y'=DYavecY=P7'X
Ainsi, pour tout i €1, n], yi’(t) = A;¥;(t) donc y;(t) = C;e*i* avec C; € R. D’oi1 le résultat suivant :

Cleklt
X(t)=PY(t)=P| : =CeM Xy +--+ Cpe’t X,
Cnelnt

Les solutions s'écrivent comme des combinaisons linéaires des solutions ¢ — e** X oi1 X est un vecteur propre
associé a la valeur propre A.

— Théoreme 3.34

Soit A € #,,(C) une matrice diagonalisable. Il existe alors une base (X1, ..., X;,) de vecteurs propres associés
aux valeurs propres A4,...,4,, éventuellement multiples.
Les solutions de I'équation X’ = AX sont de la forme :

X(t)=CeM' Xy +--+C,eM' X, avec C,...,C,€K

On notera qu'il est inutile de calculer P! pour déterminer X. De plus, pour une matrice diagonalisable dans
M, (C) seulement, il suffit d’extraire parties réelle et imaginaire pour trouver les solutions réelles.

Exercice 8
X, =3x—2x, o {x{:x1+2x2

Résoudre les systemes : {

Xy =—X1 42X, X, =—X1+3%x,

2 - Résolution de X’ = AX lorsque A est trigonalisable

On notera que cela est toujours possible, quitte a travailler dans .#,,(C).

Al X X
Supposonsque A=PTPlavecT=|(g .. x |-Aveclesnotations précédentes,
0 0 A,
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W) =2an(t)+ toy(t)+- + t,n Yalt)

J’zl(l‘)zlzh(f)‘l"'"" Lo n V(1)
Y()=P'X'(1)=TY(t) =

y,;(t) = Anyn(t)
On détermine alors y, puis on remonte... On calcule ensuite X = PY (il est toujours inutile de calculer P71).

3 - Application aux équations différentielles linéaires scalaires d’ordre 2

Létude des systemes différentiels est en partie motivée par le fait que toute équation différentielle linéaire
scalaire d’ordre n se ramene, au moyen de I'équivalence suivante, a un systeme différentiel linéaire d’ordre 1 :

o 1 0 - 0
y
/ 0
m_g / (n=1) _ |7 _
=aqpx+ax +---+a,_1x < X =AX avec X = . et A= L
y(n—l) o --- 0 O 1
ao al ve e an71

On cherchera seulement a résoudre I’équation différentielle linéaire d’ordre 2 a coefficients constants suivante :

ax"+bx'+cx=0 (a#0)

. . . . N . . X
ommengons par vectorialiser I'équation pour se ramener a une équation d’ordre 1. ns pour cela X = .
C ons pa torialiser|’équat 0 amener a une tion d’ordre 1. Posons pour cela X o

x/ _{ 0 1 X . ’_ . 0 1
[x”]_[—c/a —b/a][x’]’ soit X' =AX avec A_[—c/a —b/a]
Les valeurs propres de A ne sont rien d’autres que les racines de I'équation (caractéristique!) ar?+br +c =0.

Sans aucune surprise, trois cas sont sont envisageables.

(i) Si A admet deux valeurs propres réelles A, et A, distinctes, A est diagonalisable.
I existe alors P € GI,(R) telle que A= PDP~! avec D = diag(2, A,).

x(t)
x’(t)] = ClexltXl + CzeAZIXZ

X(t)z[

x est donc combinaison linéaire de t — e*? et de t — e’2?.

(i) Si A admet deux valeurs propres complexes non réelles conjuguées A et A, A est diagonalisable.

On peut donc écrire x(t) = C e + C,e?! avec (C;, C,) € C2. Ecrivons A sous la forme a + i3 avec B # 0.
Comme les solutions recherchées sont réelles, on a, en particulier :

s an
x(0)=C; + G eR; x(ﬁ)=ie2ﬁ(C1—Cz)eR

Ce qui conduit a C = C; = C,, puis :
x(t)=e* (Ceiﬁt + Cei/“) =2e""Re(Ce'P!)=e (c,cos(Bt)+ crsin(Bt)) (c1, ) €R?
X est ainsi une combinaison linéaire (a coefficients réels) de t — e%*' cos(ft) et t — €%’ sin(f t).

Exercice 9

| A quelle(s) condition(s) sur a et 8 les solutions obtenues sont-elles bornées sur R, ?
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(iii) Si A admet une valeur propre double A, A n’est pas diagonalisable.
En effet, A serait alors semblable donc égale a A1, ce qui n’est pas possible au vu de la forme de A.

Elle est cependant trigonalisable! Il existe méme P € GL,(R) telle que T = P~ AP avec T = [g )IL]

X'=AX < X'=PTP'X < P 'X'=TP'X < Y'=TYavecY =P 'X

Le nouveau systeme obtenu est alors de la forme :

{y{(t)=7ty1(t)+yz(t)
Vo (t)=Ay(t)

On trouve alors y,(1) = c;e*! puis y/(t) = Ax,(1)+ c;e** donc x(1)=(c; 1 + cp)e.
En conclusion, x est une combinaison linéaire de t — e*! et  — re’’.
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