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� Réduction d’endomorphismes (1)

« Les chaussures sont un instrument pour marcher, les maths sont un instrument
pour penser. On peut marcher sans chaussures, mais on va moins loin. »

Jean-Marie Souriau (1995)
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♦ Introduction – Étant donné un endomorphisme u d’un K-espace vectoriel E de dimension finie n , on
cherche à déterminer une représentation matricielle de u de la forme la plus simple possible pour répondre
à des objectifs aussi variés que le calcul des puissances successives, la résolution de systèmes différentiels
linéaires, la résolution d’équations matricielles, la recherche du commutant...

Camille Jordan 1

Réduire l’endomorphisme u revient au fond à identifier au sein d’une classe de si-
militude deMn (K) donnée (l’ensemble des matrices représentatives de u) le ou les
représentants les plus adaptés à ces objectifs. Pour y parvenir, il nous faudra « casser »
l’espace E en somme directe de sous-espaces stables par u . En effet, dans une base
adaptée, la matrice obtenue sera diagonale par blocs. Nous serons donc amenés à
comprendre comment déterminer de tels sous-espaces et, s’ils existent, sous quelles
conditions obtenir des blocs triangulaires, voire diagonaux.

Dans un premier temps, et parce que la forme diagonale est de loin la plus avantageuse,
faisons l’hypothèse qu’il existe une baseB = (e1, . . . , en ) qui diagonalise u , c’est-à-dire pour laquelle la matrice
associée est diagonale :

MatB (u ) =





λ1
...

λn



 où λ1, . . . ,λn ∈K

Nécessairement, u (ei ) =λi ei pour tout i ∈ ⟦1, n⟧. En d’autres termes, ei ∈Ker(u −λi idE ). De plus, puisqueB
est une base, de tels vecteur ei ne peuvent être nuls : les applications u −λi idE ne sont pas injectives, donc
non bijectives. Bref, det(u −λi idE ) = 0! En conclusion, si une telle base existe, les coefficients de la matrice
diagonale sont à chercher parmi les valeurs de λ pour lesquelles det(u −λidE ) = 0.

Réciproquement, connaissant de telles valeurs λ, est-on en mesure de construire une base de diagonalisation ?
Formulé autrement, peut-on décomposer E en somme directe de sous-espaces stables sur chacun desquels u
va agir telle une homothétie? La réponse sera hélas négative pour des endomorphismes ne respectant par
certains critères, comme par exemple les endomorphismes nilpotents. La diagonalisation d’un endomorphisme
ou d’une matrice ne constitue pas en ce sens une réduction « universelle ».

Ce premier chapitre consacré à la réduction vise à énoncer des premiers critères simples de diagonalisabi-
lité et de trigonalisabilité. Il sera complété d’un deuxième opus où nous verrons comment les polynômes
d’endomorphismes peuvent être efficacement mis au service de la réduction.

1. Camille Jordan (1838 – 1922), un des grands contributeurs à la théorie de la réduction.



2 Chap. 3 Réduction d’endomorphismes (1)

I | Éléments propres d’un endomorphisme

Soient E unK-espace vectoriel,K désignant sauf mention contraire R ou C, et u un endomorphisme de E .

A – Valeurs propres, vecteurs propres et sous-espaces propres

Définition 3.1 : Valeur propre, vecteur propre

• On dit que λ ∈K est une valeur propre de u s’il existe un vecteur x non nul de E tel que u (x ) =λx .

• On dit alors que x est un vecteur propre de u associé à la valeur propre λ.

• On appelle éléments propres de u les valeurs et vecteurs propres de u .

• Lorsque E est de dimension finie, on appelle spectre de u l’ensemble des valeurs propres de u dansK.
Il sera par la suite noté Sp(u ).

Quelques remarques en vrac :

• Un vecteur propre n’est jamais nul ! (sinon, tout scalaire serait valeur propre)

• En dimension finie, en notant M la matrice de u dans une baseB donnée, x est un vecteur propre de u
associé à la valeur propre λ ssi M X =λX avec X le vecteur coordonnées de x dansB . On dira que X est
un vecteur propre de M associé à la valeur propre λ.

• x est un vecteur propre de u si et seulement si la droite Vect(x ) est stable par u .

Considérons maintenant un scalaire λ et un vecteur x .

u (x ) =λx ⇐⇒ (u −λidE )(x ) = 0E ⇐⇒ x ∈Ker(u −λidE )

Comme x est non nul, cela revient à dire que Ker(u −λidE ) ̸= {0E }, c’est-à-dire que u −λidE n’est pas injective.
En particulier, 0 est valeur propre de u si et seulement si u n’est pas injective.

Définition 3.2 : Sous-espace propre

Soitλ une valeur propre de u . On appelle sous-espace propre associé àλ l’ensemble Eλ(u ) =Ker(u−λidE ).

Eλ(u ) est un sous-espace vectoriel en tant que noyau d’endomorphisme. Si λ /∈Sp(u), alors Eλ(u ) = {0E }.

Exercice 1
Déterminer les éléments propres d’une homothétie, d’un projecteur et d’une symétrie vectorielle.

Proposition 3.3

Soient u , v ∈L (E ) tels que u ◦ v = v ◦u . Alors tout sous-espace propre de u est stable par v .

Démonstration
Soit λ ∈ Sp(u ). Pour tout x ∈ Eλ(u ), u (x ) =λx , d’où u (v (x )) = v (u (x )) =λv (x ). Ainsi v (x ) ∈ Eλ(u ). ■

Lorsque deux endomorphismes u et v commutent, on pourra introduire l’endomorphisme induit par v sur
Eλ(u ). Cette idée, riche de conséquences, sera développée ultérieurement.

Dans la preuve précédente, on notera qu’il n’est pas acquis que v (x ) soit un vecteur propre de u : il se pourrait
que v (x ) = 0E .

Lemme 3.4

Deux sous-espaces propres associés à des valeurs propres distinctes sont en somme directe.
Autrement dit, si λ ̸=µ, alors Ker(u −λidE )∩Ker(u −µidE ) = {0E }.

Démonstration
Si λ ̸=µ et x ∈ Eλ(u )∩Eµ(u ), u (x ) =λx =µx . Donc (λ−µ)x = 0E et même x = 0E puisque λ ̸=µ. ■

On généralise aisément ce résultat.

© Mickaël PROST Année 2025/2026



Partie I – Éléments propres d’un endomorphisme 3

Théorème 3.5

La somme de sous-espaces propres associés à des valeurs propres deux à deux distinctes est directe.

Démonstration
Montrons par récurrence sur p ∈ N∗ que la somme de p sous-espaces propres d’un endomorphisme u
associés à des valeurs propres distinctes est directe.

(i) Initialisation – Il n’y a rien à démontrer pour p = 1 ; le résultat vient d’être démontré pour p = 2.

(ii) Hérédité – Supposons la propriété établie pour p sous-espaces propres. Montrons qu’elle est encore
vraie pour p +1 sous-espaces propres. Considérons pour cela λ1, . . ., λp+1 valeurs propres deux à deux
distinctes et (e1, . . . , ep+1) ∈ Eλ1

× . . .×Eλp+1
vecteurs propres associés tels que :

e1+ · · ·+ ep + ep+1 = 0 (∗)

Ce qui nous donne, en applicant u :

λ1e1+ · · ·+λp ep +λp+1ep+1 = 0 (∗∗)

Multiplions (∗) par λp+1 et soustrayons l’équation obtenue à (∗∗) :

(λ1−λp+1)e1+ · · ·+ (λp −λp+1)ep = 0

L’hypothèse de récurrence conduit alors à (λ1−λp+1)e1 = (λ2−λp+1)e2 = · · ·= (λp −λp+1)ep = 0E .
Ce qui, compte-tenu du fait que les valeurs propres sont distinctes, donne λ1 = · · ·=λp = 0.
En reportant dans l’équation initiale, il vient également λp+1 = 0E . ■

Corollaire 3.6

Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Démonstration
La concaténation de familles libres d’espaces en somme directe est libre. Il suffit alors de considérer pour
chaque sous-espace propre une famille (ek ) à un seul élément (non nul puisque c’est un vecteur propre). ■

Corollaire 3.7

En dimension finie, un endomorphisme ne peut admettre plus de n = dim(E ) valeurs propres.

Démonstration
Une famille libre ne peut contenir plus de dim(E ) vecteurs. ■

En dimension infinie, il peut cependant exister une infinité de valeurs propres.

Exemple 1

Soit ϕ :R[X ]→R[X ] définie par ϕ(P ) = P ′. Déterminons les éléments propres de ϕ.

∃P ̸= 0̃, ϕ(P ) =λP ⇐⇒ ∃P ̸= 0̃, λP = P ′

Pour des questions de degré, seul 0 est valeur propre et E0(ϕ) =Kerϕ =R0[X ] =Vect(1).

Exemple 2

Soitψ :C∞(R)→C∞(R) définie parψ( f ) = f ′. Déterminons les éléments propres deψ.

∃ f ̸= 0, ψ( f ) =λ f ⇐⇒ ∃ f ̸= 0, λ f = f ′

Aucune condition ne porte sur λ et nécessairement, f = x 7→C eλx avec C ∈R.
Ainsi, tout réel λ est valeur propre deψ et Eλ(ψ) =Ker(ϕ−λidE ) = {x 7→C eλx | C ∈R}=Vect(x 7→ eλx ).
On en déduit à cette occasion que la famille (x 7→ eλx )λ∈R est libre. À retenir : identifier une famille de
vecteurs comme une famille de vecteurs propres peut s’avérer efficace pour justifier la liberté de la famille.

Année 2025/2026 Lycée Louis-le-Grand – MP



4 Chap. 3 Réduction d’endomorphismes (1)

B – Polynôme caractéristique d’un endomorphisme

On suppose désormais E de dimension finie. Les notions de rang et déterminant pourront donc être employées.

λ valeur propre de f ⇐⇒ ∃x ̸= 0E , u (x ) =λx

⇐⇒ Ker(u −λidE ) ̸= {0E }
⇐⇒ u −λidE non injective

⇐⇒ u −λidE non bijective (dimension finie)

⇐⇒ det(u −λidE ) = 0 ⇐⇒ det(λidE −u ) = 0

La détermination de l’ensemble des valeurs propres d’un endomorphisme en dimension finie peut donc « en
théorie » se ramener à un simple calcul de déterminant et à une recherche de racines d’un certain polynôme.

Commençons par définir le polynôme caractéristique d’une matrice. La définition donnée nous oblige à
travailler avec des matrices à coefficients dans le corps des fractionsK(X ). La théorie du déterminant exposée
sur le corpsK reste valable dansK(X ).

Théorème /Définition 3.8 : Polynôme caractéristique d’une matrice

Soit M ∈Mn (K). On appelle polynôme caractéristique de M et on note généralement χM le polynôme
χM = det(X In −M ).

Démonstration

χM = det(X In −M ) =

�

�

�

�

�

�

�

�

X −m1,1 −m1,2 · · · −m1,n

−m2,1 X −m2,2
...

...
...

...
... −mn−1,n

−mn ,1 · · · mn ,n−1 X −mn ,n

�

�

�

�

�

�

�

�

=
∑

σ∈Sn

ϵ(σ)
n
∏

i=1

(X δσ(i ),i −mσ(i ),i ) ∈K[X ]. ■

Le polynôme caractéristique est un invariant de similitude.

Proposition 3.9

Soient A, B ∈Mn (K). Si A et B sont semblables, alors χA =χB .

Démonstration
Soient A, B ∈Mn (K) et P ∈GLn (K) telles que B = P −1AP . Alors,

χB = det(X In −B ) = det(X In −P −1AP ) = det(P −1)det(X In −A)det(P ) =χA

Théorème 3.10 : Polynôme caractéristique d’un endomorphisme

Soit u ∈L (E ), où E est unK-espace vectoriel de dimension finie. On appelle polynôme caractéristique
de u et on note généralement χu le polynôme caractéristique de toute matrice représentative.

Théorème 3.11

Soit u ∈L (E ). λ est valeur propre de u si et seulement si λ est racine de χu .

Exemple

Soit u définie sur R3 par u (x , y , z ) = (2y − z , 3x −2y ,−2x +2y + z ). Déterminons ses éléments propres.

En notant M la matrice de u dans la base canonique, il vient M =





0 2 −1
3 −2 0
−2 2 1



.

Après quelques calculs, Sp(M ) = {1, 2,−4} puis E1 =Vect((1, 1, 1)), E2 =Vect((4, 3,−2)) et E−4 =Vect((2,−3, 2)).
Notons que l’on obtient par concaténation une base de R3. Quelle est la matrice de u dans cette base ?

Remarquons que 0 ∈ Sp(M ) si et seulement si det(M ) = 0, c’est-à-dire si et seulement si M n’est pas inversible.

Notons aussi que par invariance du déterminant par transposition, pour tout M ∈Mn (K), Sp(M ) = Sp(M ⊤).

© Mickaël PROST Année 2025/2026



Partie I – Éléments propres d’un endomorphisme 5

Exercice 2

Soient M ∈Mn (C) et α ∈C tels que pour tout j ∈ ⟦1, n⟧,
n
∑

i=1

mi , j =α. Montrer que α ∈ Sp(M ).

Théorème 3.12 : Propriétés du polynôme caractéristique

Soit M ∈Mn (K). Le polynôme χM = det(X In −M ) est de degré n et unitaire. De plus,

χM = X n −Tr(M )X n−1+ · · ·+ (−1)n det(M )

Démonstration
Rappelons que,

χu = det(X In −M ) =
∑

σ∈Sn

ϵ(σ)
n
∏

i=1

(X δσ(i ),i −mσ(i ),i )

où l’on a noté δi , j le symbole de Kronecker.

• Comme annoncé, χu est bien un polynôme, de degré au plus n .

• Mais à y regarder de plus près, le seul terme de degré n apparaît dans la somme lorsque pour tout i
compris entre 1 et n , σ(i ) = i , c’est-à-dire lorsque σ = id. Comme ϵ(id) = 1, le terme correspondant

dans la somme est
n
∏

i=1

(X −mi ,i ). χu est donc de degré n et unitaire.

• Aucun terme de la forme
n
∏

i=1

(X δσ(i ),i −mσ(i ),i ) ne peut être de degré n −1. Il faudrait pour cela que la

permutationσ fixe exactement n −1 valeurs, sans fixer la dernière. La seule contribution de degré n −1

provient donc du développement du terme
n
∏

i=1

(X −mi ,i ) = X n − (m1,1+m2,2+ · · ·+mn ,n )X
n−1+ · · · .

On retrouve bien l’opposé de la trace de M .

• Le terme constant s’obtient en calculant χu (0) =
∑

σ∈Sn

ϵ(σ)
n
∏

i=1

(−mσ(i ),i ) = (−1)n det(M ). ■

Quel est le nombre de racines de χu donc de valeurs propres de u ?

Proposition 3.13

• Si E est unC-e.v. de dimension n alors u ∈L (E ) admet exactement n valeurs propres comptées avec
leur ordre de multiplicité.

• Lorsque E est un R-e.v. de dimension n , u ∈L (E ) en admet au plus n .

Exemple

Soit A =

�

0 1
−1 0

�

. χA =

�

�

�

�

X −1
1 X

�

�

�

�

= X 2+1. Dès lors, SpC(A) = {±i } et SpR(A) =∅.

Plus généralement, pour deux corpsK etK′ tels queK⊂K′, SpK(u )⊂ SpK′ (u ).

Définition 3.14 : Ordre de multiplicité

On appelle ordre de multiplicité de la valeur propre λ de u , l’ordre de multiplicité de λ en tant que racine
du polynôme caractéristique de u .

Rappelons queα est une racine de P ∈K[X ] d’ordre de multiplicité p si et seulement si une des deux propriétés
équivalentes suivantes est vérifiée :

(i) Il existe Q ∈K[X ] tel que P = (X −α)pQ (ii) P (α) = P ′(α) = · · ·= P (p−1)(α) = 0.

Exemple

χu = (X −1)(X −2)2 alors 1 est valeur propre simple de u et 2 valeur propre double.

Année 2025/2026 Lycée Louis-le-Grand – MP



6 Chap. 3 Réduction d’endomorphismes (1)

Proposition 3.15

Si M ∈Mn (R), deux valeurs propres complexes conjuguées de M ont même ordre de multiplicité.

Proposition 3.16

Soient u ∈L (E ) et F un sous-espace vectoriel de E stable par u .
Alors, le polynôme caractéristique de l’endomorphisme induit χu|F divise χu .

Démonstration
Considérons une baseB de F que l’on complète en une baseB ′ de E . En posant n = dim(E ) et p = dim(F ),

MatB ′ (u ) =

�

MatB (u|F ) B
0 C

�

et donc, χM =

�

�

�

�

X Ip −MatB (u|F ) −B
0 X In−p −C

�

�

�

�

C’est un déterminant triangulaire par blocs. Ainsi, χu =χu|F ×det(X In−p −C ), donc χu|F | χu . ■

Théorème 3.17

Soit λ une valeur propre de u d’ordre de multiplicité m (λ). Alors, 1⩽ dim(Ker(u −λidE )) = dim Eλ ⩽m (λ).

Démonstration
Soit λ une valeur propre de u . Posons p = dim(Eλ).

• Il existe x ̸= 0E tel que u (x ) =λx . Comme Eλ ̸= {0E }, p ⩾ 1.

• De plus, Eλ(u ) est stable par u . L’endomorphisme induit par u a pour matrice λIp , dans n’importe
quelle base. Son polynôme caractéristique est (X −λ)p .
En vertu du lemme précédent, (X −λ)p divise χu , ce qui nous assure que p ⩽m (λ). ■

Corollaire 3.18

Si λ est racine simple, alors Ker(u −λidE ) est de dimension 1.

Exemple

Si M =





0 2 −1
3 −2 0
−2 2 1



, Sp(M ) = {1, 2,−4}. Les sous-espaces propres de M sont donc des droites vectorielles.

Exercice 3
Soit A ∈Mn (K).

(i) Comparer les polynômes caractéristiques de A et 2A. Que dire si A et 2A sont semblables ?

(ii) On suppose que A ∈GLn (K). Comparer les polynômes caractéristiques de A et A−1, de A et Com(A).

II |Diagonalisation d’un endomorphisme

Par la suite, u désignera toujours un endomorphisme duK-espace vectoriel E de dimension finie n .

Définition 3.19 : Diagonalisabilité d’un endomorphisme

L’endomorphisme u est dit diagonalisable s’il existe une base de E dans laquelle sa matrice est diagonale.

Dans une telle base, la matrice de u est de la forme





λ1

...
λn



 avec λi valeur propre de u .

Diagonaliser un endomorphisme, c’est déterminer une base de E constituée de vecteurs propres de u .

Quelques remarques :

• Les λi apparaissent dans la matrice précédente autant de fois que leur ordre de multiplicité.

• La matrice de u dans une base quelconque est alors semblable à une matrice diagonale.

© Mickaël PROST Année 2025/2026



Partie II – Diagonalisation d’un endomorphisme 7

Exemples

idE est diagonalisable ; un projecteur est diagonalisable.

Définition 3.20 : Diagonalisabilité d’une matrice

Par analogie, une matrice est dite diagonalisable si elle est semblable à une matrice diagonale.

Rappel : Deux matrices semblables ont même trace, même déterminant et même polynôme caractéristique
donc mêmes valeurs propres.

Attention, une matrice (ou un endomorphisme) n’est pas toujours diagonalisable ! De plus, l’ensemble des
matrices (ou des endomorphismes) diagonalisables n’est pas stable par addition, ni par composition.

Exemple

Soit M =

�

0 1
0 0

�

. Clairement, Sp(M ) = {0}. Si M était diagonalisable, M = P ×
�

0 0
0 0

�

×P −1 =

�

0 0
0 0

�

. Absurde !

Remarquons par ailleurs que E0(M ) =Vect
��

1
0

��

.

À quelle condition un endomorphisme est-il diagonalisable ? De façon grossière, il faut et il suffit qu’il admette
suffisamment de vecteurs propres pour pouvoir former une base de E et ainsi construire une matrice diagonale.
C’est exactement ce qu’expriment les théorèmes suivants. Mais rappelons auparavant que :

E =
p
⊕

i=1

Fi
déf.
⇐⇒ ∀x ∈ E ∃!(x1, . . . , xp ) ∈ F1× · · ·× Fp x = x1+ · · ·+ xp

prop
⇐⇒ la concaténation de bases de F1, . . . , Fp est une base de E

prop
⇐⇒

p
∑

i=1

Fi est directe et dim(E ) =
p
∑

i=1

dim(Fi )

Théorème 3.21 : Condition nécessaire et suffisante de diagonalisabilité (1)

L’endomorphisme u est diagonalisable si et seulement si E =
⊕

λ∈Sp(u )

Eλ.

Démonstration
Raisonnons par double implication :

⇐= Soit (e1, . . . , en ) une base de E obtenue par concaténation de bases des sous-espaces Eλ.
Par définition, u (ei ) =λi ei donc la matrice représentative de u dans cette base est diagonale.

=⇒ Réciproquement, si (e1, . . . , en ) est une base de vecteurs propres de u , tout vecteur de E s’écrit bien
comme combinaison linéaire d’éléments des sous-espaces propres Eλi

. Par ailleurs, cette décomposi-
tion est unique puisque ces sous-espaces sont en somme directe (cf. section I). ■

Corollaire 3.22

L’endomorphisme u est diagonalisable si et seulement si dim(E ) =
∑

λ∈Sp(u )

dim(Eλ).

Théorème 3.23 : Condition nécessaire et suffisante de diagonalisabilité (2)

L’endomorphisme u est diagonalisable ssi χu est scindé et pour tout λ ∈ Sp(u ), dim Eλ =m (λ).

Année 2025/2026 Lycée Louis-le-Grand – MP



8 Chap. 3 Réduction d’endomorphismes (1)

Démonstration
Raisonnons là encore par double implication.

=⇒ Notons αi la dimension de Eλi
. La matrice de u dans une base de diagonalisation est de la forme :

M =





λ1Iα1

...
λp Iαp





Ainsi, χu = χM = (X −λ1)α1 × · · · × (X −λp )αp . Le polynôme caractéristique de u est donc scindé et
l’ordre de multiplicité de λi vaut dim(Eλi

) et ceci, quel que soit i ∈ ⟦1, p⟧.

⇐= Supposons que χu est scindé et que m (λ) = dim(Eλ) pour toute valeur propre λ. On a alors :

dim(E ) = deg(χu ) =
scindé

∑

λ∈Sp(u )

m (λ) =
∑

λ∈Sp(u )

dim(Eλ)
■

Corollaire 3.24

Si χu n’est pas scindé, u n’est pas diagonalisable.

Théorème 3.25 : Condition suffisante de diagonalisabilité

Si χu est scindé et n’admet que des racines simples, alors u est diagonalisable.

Démonstration
En effet, si λ est valeur propre simple de u alors dim Eλ = 1=m (λ). ■

Pour les 5/2, rappelons comme résultat supplémentaire que toute matrice symétrique réelle est diagonalisable
au moyen d’une matrice de passage orthogonale.

Plan de diagonalisation — (hors cas particulier)

➊ Étude de la diagonalisabilité de u .

• On détermine χu .

• Si χu n’est pas scindé, u n’est pas diagonalisable. Dans C, χu est toujours scindé.

• Si χu est scindé, on compare dim Eλ et m (λ). À ce stade, il n’est pas utile de déterminer une base de Eλ.
On remarquera que dim Eλ = n − rg(M −λIn ). (théorème du rang)

➋ Diagonalisation de u lorsque c’est possible.
On détermine une base de Eλ pour chaque valeur propre en résolvant l’équation M X =λX et on concatène
les bases obtenues.

Exemples
Les matrices suivantes sont-elles diagonalisables ? Si oui, les diagonaliser.

A =





5 1 −1
2 4 −2
1 −1 3



 ; B =





8 −1 2
7 0 2
−18 3 −4



 ; C =





0 1 0
−1 0 1
0 −1 0





χA = (X −2)(X −4)(X −6), A diagonalisable.χB = (X −2)(X −1)2 et dim E1 = 1 donc B n’est pas diagonalisable.
χC = X (X 2+2), C diagonalisable dansM3(C)mais pas dansM3(R).

Pour finir, on notera que diagonaliser un endomorphisme revient à l’exprimer comme une combinaison
linéaire de projecteurs.

Exercice 4
Soient u ∈L (E ) diagonalisable et λ ∈ Sp(u ). On note pλ le projecteur spectral associé à λ, i.e. la projection
sur Eλ(u ) parallèlement à la somme des autres sous-espaces propres. Montrer que pλ est un polynôme en u .

Exercice 5
Trouver le spectre d’une matrice compagnon et une condition nécessaire et suffisante de diagonalisabilité.
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Partie III – Trigonalisation d’un endomorphisme 9

III | Trigonalisation d’un endomorphisme

1 – Définition

Définition 3.26 : Trigonalisabilité

• Un endomorphisme u de E est dit trigonalisable s’il existe une base de E dans laquelle la matrice de
u est triangulaire supérieure.

• Une matrice est dite trigonalisable si elle est semblable à une matrice triangulaire supérieure.

Théorème 3.27

u est trigonalisable si et seulement si son polynôme caractéristique est scindé.

Toute matrice est donc trigonalisable dansMn (C). Ainsi, pour toute matrice M ∈Mn (C), il existe une matrice
triangulaire T (dont la diagonale est constituée par les valeurs propres de M ) et P inversible telles que :

T = P −1M P =





λ1 × ×

0
... ×

0 0 λn





Démonstration

=⇒ Supposons l’endomorphisme u trigonalisable. Il existe donc une base de E dans laquelle la matrice
de u est de la forme :





λ1 × ×

0
... ×

0 0 λn





Son polynôme caractéristique est alors
n
∏

i=1

(X −λi ), il est scindé.

⇐= Raisonnons par récurrence sur la dimension de E .

• Initialisation – Le résultat est vrai en dimension 1 puisque toute matrice représentative de u est
triangulaire supérieure.

• Hérédité – Supposons le résultat établi au rang n −1, montrons qu’il est encore vrai au rang n .
Le polynôme caractéristique de u étant scindé et de degré n ⩾ 1, il admet au moins une racine λ. En
notant e1 un vecteur propre associé, que l’on complète en une baseB = (e1, . . . , en ) de E , la matrice
de u dans cette base est de la forme :

M =

�

λ ⋆
0 M ′

�

où M ′ ∈Mn−1(K)

χM = (X −λ)χM ′ . χM ′ étant scindé, par hypothèse de récurrence, la matrice M ′ est trigonalisable.
On peut alors écrire T = P ′−1M ′P ′ avec P ′ ∈GLn−1(K). Considérons alors la matrice :

P =

�

1 0
0 P ′

�

∈GLn (K)

En effectuant un produit par blocs, il vient :

P −1M P =

�

1 0
0 P ′−1

��

λ ⋆
0 M ′

��

1 0
0 P ′

�

=

�

λ •
0 P ′−1M P ′

�

=

�

λ •
0 T

�

Cette dernière matrice est bien triangulaire, ce qui achève la démonstration par récurrence. ■
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10 Chap. 3 Réduction d’endomorphismes (1)

Proposition 3.28

La trace d’un endomorphisme est la somme de ses valeurs propres (complexes) et le déterminant son
produit.

On rappelle que pour toute matrice M ∈Mn (K) :

χM = X n −Tr(M )X n−1+ · · ·+ (−1)n det(M )

Il suffit de développer le polynôme caractéristique et d’identifier :

χM = (X −λ1)× · · ·× (X −λn ) = X n − (λ1+ · · ·+λn )
︸ ︷︷ ︸

=Tr(M )

X n−1+ · · ·+ (−1)n λ1× · · ·×λn
︸ ︷︷ ︸

=det(M )

La trigonalisabilité de M ∈Mn (C)nous assure également que pour tout k ∈N, Tr(M k ) =
n
∑

i=1

λk
i =
∑

λ∈SpC(M )

m (λ)λk .

2 – Trigonalisation effective dans le cas où n = 2

On suppose χu scindé avec u ∈L (E ) et dim E = 2. On écrit alors χu = (X −λ1)(X −λ2).

➊ Si λ1 ̸=λ2, comme χu est scindé à racines simples, u est diagonalisable.
Dans une certaine base,

Mat(u ) =

�

λ1 0
0 λ2

�

➋ Si λ1 =λ2 =λ, u est-elle diagonalisable ?
Si c’est le cas,

M = P D P −1 = P

�

λ 0
0 λ

�

P −1 =λI2

Et u vaut alors λidE .
Sinon, dim Eλ = 1. Soit e1 ∈ Eλ, e1 ̸= 0E et on complète la famille libre (e1) en une base (e1, e2) de E .
Dans cette base,

Mat(u ) =

�

λ ×
0 λ

�

On peut toujours choisir e2 de sorte que Mat(u ) =

�

λ 1
0 λ

�

.

3 – Trigonalisation effective dans le cas où n = 3

On suppose χu scindé avec u ∈L (E ) et dim E = 3. On écrit χu sous la forme χu = (X −λ1)(X −λ2)(X −λ3).

➊ Si les λi sont distincts, χu étant scindé à racines simples, u est diagonalisable.
Dans une certaine base,

Mat(u ) =





λ1 0 0
0 λ2 0
0 0 λ3





➋ Si λ1 est racine simple et si λ2 =λ3, deux possibilités :

• soit dim Eλ2
= 2 et u est diagonalisable.

• soit dim Eλ2
= 1 et alors, u n’est pas diagonalisable.

On choisit alors e1 ∈ Eλ1
et e2 ∈ Eλ2

non nuls que l’on complète en une base (e1, e2, e3) de E .
Dans cette base,

Mat(u ) =





λ1 0 ×
0 λ2 ×
0 0 λ2




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Partie IV – Endomorphismes nilpotents 11

On essaie souvent de choisir (e1, e2, e3) de sorte que Mat(u ) =





λ1 0 0
0 λ2 1
0 0 λ2



.

➌ λ est racine triple. Là aussi, plusieurs possibilités :

• si dim Eλ = 3 alors u est diagonalisable. f =λidE .

• si dim Eλ = 2 et alors on complète une base (e1, e2) de Eλ en une base (e1, e2, e3) de E .
Dans cette base,

Mat(u ) =





λ1 0 ×
0 λ2 ×
0 0 λ2





• si dim Eλ = 1, la question est plus délicate et sera abordée en fin de chapitre.

Exercice 6

Réduire la matrice M =





8 −1 2
7 0 2
−18 3 −4



.

IV | Endomorphismes nilpotents

Dans cette partie, E désigne toujours unK-espace vectoriel de dimension finie n .

Définition 3.29 : Endomorphisme nilpotent

Un endomorphisme u de E est dit nilpotent s’il existe k ∈N tel que u k = 0L (E ).
On appelle alors indice de nilpotence de u le plus petit de ces entiers p .

Si l’on note p ∈N∗ l’indice de nilpotence d’un endomorphisme nilpotent u , u p = 0L (E ) et u p−1 ̸= 0L (E ).

On définit de façon analogue la propriété de nilpotence d’une matrice.

Exemple

La matrice





3 −3 −1
2 −2 −2
−1 1 −1



 est nilpotente. Quel est son ordre de nilpotence ?

Proposition 3.30

L’indice de nilpotence d’un endomorphisme nilpotent est inférieur ou égal à dim(E ).

Démonstration
Soit p l’indice de nilpotence d’un endomorphisme nilpotent u . Comme u p−1 ̸= 0L (E ), il existe x ∈ E tel que
u p−1(x ) ̸= 0E . Montrons alors que la famille (x , u (x ), . . . , u p−1(x )) est libre.
Soit, pour cela, (λ0, . . . ,λp−1) ∈Kp tel que λ0 x +λ1u (x ) + · · ·+λp−2u p−2(x ) +λp−1u p−1(x ) = 0E .
On applique successivement u , u 2, . . ., u p−1 de telle sorte que, par nilpotence,

λ0 x +λ1u (x ) + · · ·+λp−2u p−2(x ) +λp−1u p−1(x ) = 0E

λ0u (x ) +λ1u 2(x ) + · · ·+λp−2u p−1(x ) = 0E

...

λ0u p−2(x ) +λ1u p−1(x ) = 0E

λ0u p−1(x ) = 0E

Comme u p−1(x ) ̸= 0E , on trouve λ0 = 0 puis, en remontant, on a successivement λ0 =λ1 = · · ·=λp−1 = 0.
Nous avons une famille libre de p vecteurs. Nécessairement, p ⩽ dim(E ). ■
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12 Chap. 3 Réduction d’endomorphismes (1)

Ce résultat appelle plusieurs remarques. D’une part, on a obligatoirement u n = 0L (E ) puisque p ⩽ n . D’autre
part, si l’indice de nilpotence est maximal, c’est-à-dire s’il est égal à n alors la famille de vecteurs introduite dans
la preuve est une base de E . On peut alors écrire la matrice de u dans la base (u n−1(x ), u n−2(x ), . . . , u (x ), x ) :

M =















0 1 0 · · · 0

0
...

...
...

...
...

...
...

... 0
...

...
... 1

0 · · · · · · 0 0















Cette matrice est triangulaire supérieure et elle n’est clairement pas diagonalisable. Nous allons montrer plus
généralement que 0 est la seule valeur propre complexe d’un endomorphisme nilpotent.

Proposition 3.31

Un endomorphisme est nilpotent si, et seulement s’il est trigonalisable et si 0 est sa seule valeur propre.

Démonstration
Démontrons ce résultat par une approche matricielle.

=⇒ Supposons la matrice M nilpotente. Quitte à travailler dansC, soit λ une valeur propre de M et X un
vecteur propre associé. M X =λX et une récurrence simple donne M n X =λn X = 0. Comme X ̸= 0, il
vient λ= 0. La seule valeur propre complexe de M est 0. χM = X n est scindé surR comme surC, la
matrice est trigonalisable.

⇐= Si M est trigonalisable et de valeurs propres toutes nulles, alors M est semblable à T =





0 × ×
...

... ×
0 · · · 0



.

Or T n = 0 (via l’endomorphisme deKn canoniquement associé). Il s’en suit que M n = 0. ■

Exercice 7

Trigonaliser la matrice M =





−2 2 3
−2 1 2
−3 2 4



.

V | Applications classiques de la réduction

A – Calcul de puissances

Soient A ∈Mn (K) et p ∈N∗. On cherche à calculer Ap par réduction de A.

➊ Si A est diagonalisable alors il existe P ∈GLn (K) tel que :

D = P −1AP avec D =





λ1 0 0

0
... 0

0 0 λn



 où P est constituée de vecteurs propres de A.

Par récurrence, Ap = (P D P −1)p = P D p P −1 avec D p = diag(λp
1 , . . . ,λ

p
n ).

➋ Si A est trigonalisable alors il existe P ∈GLn (K) tel que :

T = P −1AP avec T =





λ1 × ×

0
... ×

0 0 λn





Donc Ap = (P T P −1)p = P T p P −1. Le calcul de T p est cependant plus délicat que dans le cas précédent.

T =





λ1 × ×

0
... ×

0 0 λn



=D +N avec D =





λ1 0 0

0
... 0

0 0 λn



 et N =





0 × ×

0
... ×

0 0 0




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Partie V – Applications classiques de la réduction 13

N est nilpotente donc N p se calcule aisément, tout comme D p . À condition que N et D commutent, on
peut utiliser la formule du binôme... Lorsque n = 2 ou n = 3, on cherchera généralement T sous la forme :

�

λ 1
0 λ

�

ou





λ 0 0
0 µ 1
0 0 µ





Les puissances de T peuvent alors se calculer facilement.

B – Suites récurrentes linéaires

1 – Suites récurrentes linéaires d’ordre 2

On considère une suite (un )n∈N vérifiant la relation de récurrence a un+2+ b un+1+ c un = 0 avec a , b , c ∈R et
a ̸= 0. On suppose que u0, u1 ∈R. On chercher à exprimer un en fonction de n .

Posons pour cela Xn =

�

un+1

un

�

. Xn+1 =

�

un+2

un+1

�

=

�

− b
a un+1− c

a un

un+1

�

=

�

− b
a −

c
a

1 0

�

Xn = AXn avec A =

�

− b
a −

c
a

1 0

�

.

Par récurrence, Xn = AXn−1 = A2Xn−2 = · · ·= An X0 = An

�

u1

u0

�

. Réduisons A pour déterminer An .

χA =

�

�

�

�

X + b
a

c
a

−1 X

�

�

�

�

= X 2+
b

a
X +

c

a
donc χA(X ) = 0⇐⇒ a X 2+ b X + c = 0.

D’après ce qui précède, deux possibilités :

(i) A admet deux racines simples λ1 et λ2. A est diagonalisable et A = P

�

λ1 0
0 λ2

�

P −1.

Donc

�

un+1

un

�

= Xn = P

�

λn
1 0

0 λn
2

�

P −1X0. Ainsi, il existeα,β ∈C tel que pour tout n ∈N, un =αλn
1 +βλ

n
2 .

Lorsque les racines ne sont pas réelles, elles sont conjuguées :

∃(α,β ) ∈C2, un =αλ
n +βλ

n

Comme un ∈R, un = un conduit à β =α. En posant λ=ρeiθ ,

∀n ∈N, un =ρ
n
�

αei nθ +αei nθ
�

= 2ρn Re(αei nθ ) =ρn (A cos(nθ ) +B sin(nθ )) avec A, B ∈R

(ii) A admet une racine double λ. Comme A ̸=λI2, A = P

�

λ 1
0 λ

�

P −1.

Donc

�

un+1

un

�

= Xn = P

�

λn nλn−1

0 λn

�

P −1X0. Il existe α,β ∈R tel que pour tout n ∈N, un = (α+nβ )λn .

Théorème 3.32 : Suite récurrente linéaire d’ordre 2

Soit (un )n∈N une suite vérifiant la relation de récurrence un+2 = a un+1+ b un (∗)
• Si l’équation possède deux racines réelles distinctes r1 et r2, il existe α,β ∈R tels que :

∀n ∈N, un =αλ
n
1 +βλ

n
2

• Si l’équation possède une racine double r , il existe α,β ∈R tels que :

∀n ∈N, un = (α+nβ )λn

• Si l’équation possède deux racines complexes conjuguées ρe±iθ , il existe α,β ∈R tels que :

∀n ∈N, un =ρ
n (αcos(nθ ) +β sin(nθ ))

L’ensemble des suites vérifiant la relation (∗) est un espace vectoriel de dimension 2.
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14 Chap. 3 Réduction d’endomorphismes (1)

2 – Suites récurrentes linéaires d’ordre p

On généralise aisément ce théorème à des suites récurrentes linéaires d’ordre supérieur.

Théorème 3.33

Soient p ∈N∗ et (a0, . . . , ap−1) ∈Kp . L’ensemble des suites vérifiant une relation de récurrence de la forme :

∀n ∈N, un+p = ap−1un+p−1+ap−2un+p−2+ · · ·+a0un (∗)

forme un espace vectoriel de dimension p .

Démonstration
Notons Ep l’ensemble des suites deKN qui vérifient la relation (∗).
• Montrons tout d’abord que Ep est un espace vectoriel.

– La suite nulle vérifie bien la relation de récurrence (∗).
– Soient (un )n∈N et (vn )n∈N deux suites de Ep et λ ∈ K. On pose alors wn = λun + vn pour tout n ∈ N.

Montrons que (wn )n∈N ∈ Ep . On a pour tout n ∈N,

un+p = ap−1un+p−1+ap−2un+p−2+ · · ·+a0un ; vn+p = ap−1vn+p−1+ap−2vn+p−2+ · · ·+a0vn

Donc pour tout n ∈N,

wn+p =λun+p + vn+p = ap−1(λun+p−1+ vn+p−1) + · · ·+a0(λun + vn )

= ap−1wn+p−1+ap−2v wn+p−2+ · · ·+a0wn

• Montrons maintenant que Ep est de dimension p en établissant un isomorphisme entre Ep etKp . Considé-
rons l’application ϕ : Ep →Kp définie par ϕ((un )n∈N) = (u0, . . . , up−1). C’est tout simplement l’application
qui à une suite de Ep lui associe ses p premières valeurs. Cette application est bien linéaire et toute suite de
Ep est entièrement définie par la donnée de p conditions initiales. Bref,ϕ est un isomorphisme d’espaces
vectoriels, ce qui montre que Ep est de dimension p . ■

Pour p = 2, on retrouve le résultat du paragraphe précédent.

Essayons d’obtenir une base de Ep . L’idée consiste là encore à transformer notre relation de récurrence scalaire
d’ordre p en une récurrence vectorielle d’ordre 1. Posons pour cela :

Xn =









un+p−1

un+p−2
...

un









∈Kp ; A =













ap−1 ap−2 . . . . . . a0

1 0 . . . . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . 0 1 0













∈Mp (K)

Comme Xn+1 = AXn pour tout entier n , on trouve Xn = An X0. Ceci nous invite à réduire A pour calculer An .
On pourra remarquer que le polynôme caractéristique de A n’est rien d’autres que X p −ap−1X n+p−1−· · ·−a0.

Supposons maintenant que A admet p valeurs propres simples. A est alors diagonalisable. Il existe donc
λ1, . . . ,λn ∈Kn et P ∈GLp (K) tels que :









un+p−1

un+p−2
...

un









= P ·







λn
1

...
λn

p






·P −1 ·









up−1

up−2
...

u0









un est donc une combinaison linéaire des λn
i et l’ensemble des suites vérifiant la relation (∗) est :

Vect(n 7→λn
1 , . . . , n 7→λn

p )

Comme la famille est génératrice et qu’elle comporte p = dim(Ep ) vecteurs, c’est bien une base de Ep .
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C – Équations différentielles linéaires à coefficients constants

Un système d’équations différentielles linéaires d’ordre 1 à coefficients constants est un système de la forme :






















x ′1(t ) = a11 x1(t ) + · · ·+a1n xn (t ) + b1

x ′2(t ) = a21 x1(t ) + · · ·+a2n xn (t ) + b2

...
...

x ′n (t ) = an1 x1(t ) + · · ·+ann xn (t ) + bn

Il peut s’écrire sous la forme X ′(t ) = AX (t ) +B avec, pour tout t dans un certain intervalle I ⊂R,

X (t ) =





x1(t )
...

xn (t )



 ∈Kn ; A =





a11 . . . a1n
...

...
an1 . . . ann



 ∈Mn (K) ; B =





b1
...

bn



 ∈Kn

Nous étudierons plus en détail ces systèmes linéaires dans un chapitre ultérieur ; nous exprimerons en particu-
lier la solution générale à l’aide de l’exponentielle matricielle et justifierons l’existence et l’unicité de la solution
dans le cas d’un problème de Cauchy (théorème de Cauchy-Lipschitz dans sa version linéaire). Retenons pour
le moment que l’on peut facilement exprimer les solutions d’un tel système en réduisant la matrice A.

1 – Résolution de X ′ = AX lorsque A est diagonalisable

Soient A ∈Mn (K) une matrice diagonalisable et P ∈GLn (K) telle que D = P −1AP = diag(λ1, . . . ,λn ).

X ′ = AX ⇐⇒ X ′ = P D P −1X ⇐⇒ P −1X ′ =D P −1X ⇐⇒ Y ′ =DY avec Y = P −1X

Ainsi, pour tout i ∈ ⟦1, n⟧, y ′i (t ) =λi yi (t ) donc yi (t ) =Ci eλi t avec Ci ∈R. D’où le résultat suivant :

X (t ) = P Y (t ) = P





C1eλ1t

...
Cn eλn t



=C1eλ1t X1+ · · ·+Cn eλn t Xn

Les solutions s’écrivent comme des combinaisons linéaires des solutions t 7→ eλt X où X est un vecteur propre
associé à la valeur propre λ.

Théorème 3.34

Soit A ∈Mn (C)une matrice diagonalisable. Il existe alors une base (X1, . . . , Xn )de vecteurs propres associés
aux valeurs propres λ1, . . . ,λn , éventuellement multiples.
Les solutions de l’équation X ′ = AX sont de la forme :

X (t ) =C1eλ1t X1+ · · ·+Cn eλn t Xn avec C1, . . . , Cn ∈K

On notera qu’il est inutile de calculer P −1 pour déterminer X . De plus, pour une matrice diagonalisable dans
Mn (C) seulement, il suffit d’extraire parties réelle et imaginaire pour trouver les solutions réelles.

Exercice 8

Résoudre les systèmes :

�

x ′1 = 3x1−2x2

x ′2 =−x1+2x2
et

�

x ′1 = x1+2x2

x ′2 =−x1+3x2

2 – Résolution de X ′ = AX lorsque A est trigonalisable

On notera que cela est toujours possible, quitte à travailler dansMn (C).

Supposons que A = P T P −1 avec T =





λ1 × ×

0
... ×

0 0 λn



. Avec les notations précédentes,
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16 Chap. 3 Réduction d’endomorphismes (1)

Y ′(t ) = P −1X ′(t ) = T Y (t )⇐⇒























y ′1 (t ) =λ1 y1(t ) + t12 y2(t ) + · · ·+ t1,n yn (t )

y ′2 (t ) =λ2 y2(t ) + · · ·+ t2,n yn (t )
...

y ′n (t ) =λn yn (t )

On détermine alors yn puis on remonte... On calcule ensuite X = P Y (il est toujours inutile de calculer P −1).

3 – Application aux équations différentielles linéaires scalaires d’ordre 2

L’étude des systèmes différentiels est en partie motivée par le fait que toute équation différentielle linéaire
scalaire d’ordre n se ramène, au moyen de l’équivalence suivante, à un système différentiel linéaire d’ordre 1 :

x (n ) = a0 x +a1 x ′+ · · ·+an−1 x (n−1) ⇐⇒ X ′ = AX avec X =







y
y ′

...
y (n−1)






et A =













0 1 0 · · · 0

0
...

...
...

...
...

...
...

... 0
0 · · · 0 0 1

a0 a1 · · · · · · an−1













On cherchera seulement à résoudre l’équation différentielle linéaire d’ordre 2 à coefficients constants suivante :

a x ′′+ b x ′+ c x = 0 (a ̸= 0)

Commençons par vectorialiser l’équation pour se ramener à une équation d’ordre 1. Posons pour cela X =

�

x
x ′

�

.

�

x ′

x ′′

�

=

�

0 1
−c /a −b /a

��

x
x ′

�

, soit X ′ = AX avec A =

�

0 1
−c /a −b /a

�

Les valeurs propres de A ne sont rien d’autres que les racines de l’équation (caractéristique !) a r 2+ b r + c = 0.
Sans aucune surprise, trois cas sont sont envisageables.

(i) Si A admet deux valeurs propres réelles λ1 et λ2 distinctes, A est diagonalisable.
Il existe alors P ∈GL2(R) telle que A = P D P −1 avec D = diag(λ1,λ2).

X (t ) =

�

x (t )
x ′(t )

�

=C1eλ1t X1+C2eλ2t X2

x est donc combinaison linéaire de t 7→ eλ1t et de t 7→ eλ2t .

(ii) Si A admet deux valeurs propres complexes non réelles conjuguées λ et λ, A est diagonalisable.

On peut donc écrire x (t ) =C1eλt +C2eλt avec (C1, C2) ∈C2. Écrivons λ sous la forme α+ iβ avec β ̸= 0.
Comme les solutions recherchées sont réelles, on a, en particulier :

x (0) =C1+C2 ∈R ; x
�

π

2β

�

= i e
απ
2β (C1−C2) ∈R

Ce qui conduit à C =C1 =C2, puis :

x (t ) = eαt
�

C eiβ t +C eiβ t
�

= 2eαt Re
�

C eiβ t
�

= eαt
�

c1 cos(β t ) + c2 sin(β t )
�

(c1, c2) ∈R2

x est ainsi une combinaison linéaire (à coefficients réels) de t 7→ eαt cos(β t ) et t 7→ eαt sin(β t ).

Exercice 9

À quelle(s) condition(s) sur α et β les solutions obtenues sont-elles bornées sur R+ ?
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(iii) Si A admet une valeur propre double λ, A n’est pas diagonalisable.
En effet, A serait alors semblable donc égale à λI2 ce qui n’est pas possible au vu de la forme de A.

Elle est cependant trigonalisable ! Il existe même P ∈GL2(R) telle que T = P −1AP avec T =

�

λ 1
0 λ

�

.

X ′ = AX ⇐⇒ X ′ = P T P −1X ⇐⇒ P −1X ′ = T P −1X ⇐⇒ Y ′ = T Y avec Y = P −1X

Le nouveau système obtenu est alors de la forme :

�

y ′1 (t ) =λy1(t ) + y2(t )

y ′2 (t ) =λy2(t )

On trouve alors y2(t ) = c1eλt puis y ′1 (t ) =λx1(t ) + c1eλt donc x (t ) = (c1t + c2)eλt .
En conclusion, x est une combinaison linéaire de t 7→ eλt et t 7→ t eλt .
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