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Notations générales

E ensemble non vide.
R ensemble des nombres réelles.
R, ensemble des nombres réelles positive.
% la dérivée directionelle vers ’extérieure.
d distance.
-] norme.
f application.
{z,} suite.
n
da = > |z — il
i=1
1
n 9 2
a = (S
i=1
doo = max |r; — y;| .
1<i<n

n
14l 00 = max <;|aij|) :

n
AL, = max (2 raz-j\).

1<j<n \ ;=1

n n 2
1Al =222 fayl™

i=1j=1
B (xg,7) boule ouvert de centre z et rayon 7.
B (z9,7) l'adhérence de B (zo, 7).

C' ([a,b]) espace des applications continues.
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Introduction

Le théoréme du point fixe a une trés grande importance taut théorique que pratique. En
effet, de trés nombreux problémes peuvent se présenter sous la forme de recherche du point
fixe.

Ce théoréeme a un champ d’applications trés vaste, et il rend encore bien des services a
I’heure actuelle, tant en mathématiques pures qu’en mathématiques appliquées.

pour nous on s’interesse dans ce travail au théoréme du point fixe de Banach qui présente
la base de la théorie du point fixe basé sur les applications cantractantes.

Le théoréme du point fixe de Banach est a la base de la démonstration de princi-
paux théorémes d’analyses: théoréme d’inversion local, théoréme des fonctions implicites,
théoréme d’existences et d’unicité des solutions d’équations différentielles et intégrales.

Du point de vue pratiques, la démonstration du théoréme basé sur les approximations
successives offrant un algorithme de recherche du point fixe plus un controle sur Ierreur
commise.

Révenons a notre travail, cette mémoire est composé de trois chapitres:

le premier chapitre est consacré aux notions et résultats générales utiles pour la suite.
Tant qu’au deuxiéme chapitre, on propose notre théoréme avec une démonstration bien
detaillée plus des remarques importantes. par la suite, on va étudier des extensions du
théoréme basés sur la notion de contraction.

Dans le dernier chapitre, on a choisit des problémes d’analyse ol intervient le théoréme
du point fixe pour ’existence et I'unicité de solution, et un modéle numérique ot on approche
de la solution a partir de ce théoréme.

En terminant cette mémoire par une conclusion dont on résume notre travail.



Chapitre 1
Préliminaires

Ce chapitre a consacré a l'introduction de quelques notions fondamentales et certains déf-
initions des espaces métriques qui seront utiles pour le développement ultérieur de notre
travail. Nous faisons également un rappel du certains théorémes et des résultats que nous

utiliserons dans les chapitres 2 et 3.

1.1 Distances et espaces métriques

1.1.1 Distances

Définition 1.1.1 Soit E un ensemble non vide. Une distance (ou métrique) sur E est une
fonction d: E x E — R, satisfaisant aux propriétés suivantes:

a) Ye,y € E, d(xz,y) >0 et d(z,y) =0 si et seulement si = =1y.

b) d(x,y) = d(y,x), (symétrique).

c)Vr,y,z € E, d(x,z) < d(x,y) + d(y, z), (inégalite triangulaire).

Exemple 1.1.1 D (z,y) = dzy) oot yne distance sur un ensemble non vide E si d est
Y 1+d(z,y)

une distance sur E car:

a)
D(z,y) = (1.1.1)



1.1. Distances et espaces métriques

d(z,y)
1+d(z,y)
(1.1.1) <= d(xz,y)=0

(1.1.1) —0

(1.1.1) <= z=y

D’ou la condition (a).
b)
d(z,y)
1+d(z,y)
d(y, )
L+d(y, )
= D(y,x)

D’ot la condition (b).

¢) enfin, concernant l'inégalite triangulaire (c), on procéde comme suit, on voit que

d(z,y)
1+d(x,y)
1

1 —— =
1+d(z,y)

D (z,y)

Grace a 1 inégalite triangulaire vérifiée par d on peut écrire:

d(z,2) < d(z,y)+d(y,2)
d(z,2)+1 < d(xz,y)+d(y,2z)+1

1 1
d(z,z)+1 = d(z,y)+d(y,z) +1

1 1

Cd(z,2)+ 1 = Cd(z,y) +d(y,z) + 1
1 1
1_d(a:,z)+1 = _d(x,y)—l—d(y,z)—l—l
d(z,2) < d(z,y)+d(y,2)

1+d(z,2) — 1+d(z,y)+d(y,=2)



1.1. Distances et espaces métriques

En passant au méme dénominateur, on obtient:

dw,z) d(z,y) d(y, z)
1+d(z,z) = 1+d(z,y) +d(y,2) 1+d(z,y)+d(y,=2)

Donc

d(z,2) d(z,y) d(y,2)
1+d(z,2z) — 1+d(xz,y) 14+d(y,=2)

Alors
D(x,z) < D(z,y)+ D(y,z)

Exemple 1.1.2 d(z,y) = % — i , T,y € R* est une distance sur R* car:
a)
d(z,y)=0 (1.1.2)
1 1
(112) = |--— —‘ =0
r y
1 1
(1.12) <= —=-
r oy
(1.12) <= z=y
b)
1 1
d = |-
@i = -
1 1
o)
Yy T
1 1
=l -2
y T
1
=,



1.1. Distances et espaces métriques

d(z,z) =

IA

Donc

1 1

Tz

1 1 1 1
____|____
Ty oy oz
1 1‘ ‘1 1
—_ — — + _ — —
r oy y oz

d(z,z) < d(z,y) +d(y,z)

Exemple 1.1.3 §(z,y) = In(1 4 d(z,y)) est une distance sur un ensemble non vide E si

d est distance sur E car:

a)
d(z,y) = (1.1.3)
(1.13) <= In(1+d(z,y))=0
(11.3) < 1+d(z,y)=1
(1.13) <= d(z,y)=0
(1.13) <= z=y
b)
d(z,y) = In(l+d(x,y))
= In(1+d(y,x))
= 0(y,7)
¢) On a d distance alors:
d(z,z) <d(z,y)+d(y,z) (1.1.4)



1.1. Distances et espaces métriques

(1.14) <= 1+d(z,2)<1+d(z,y)+d(y,z2)

(1.14) <= 1+d(z,2)<1+d(z,y)+d(y, 2)+dzy)dy,>2)
(1.14) <= 1+d(z,2)<(1+d(z,y)1+d(y,2))

(1.14) <— In(1+d(z,y) <In(l+d(z,y)) (1+d(y,2))
(114) <= In(l+d(z,y) <In(l+d(z,y) (L+d(y,z))
(1.14) <= WIh(l+d(zr,y) <In(1+d(z,y))+In(l+d(y,=2))

Donc

d(x,2) <6 (z,y)+0(y,2)

1.1.2 Distances équivalentes

Définition 1.1.2 On dit que deux distances dy, dy sur un ensemble E sont équivalentes s’il

existe deux constantes réelles 3 > o > 0 telles que:

a.dy(x,y) < do(x,y) < B.di(x,y)

pour tous x,y € E.

p

Exemple 1.1.4 Soit (d;)i1<i<, une famille finie de p distances sur E;. On pose E = H E;,
i=1

et on définit sur le produit cartésien E x E deux distances comme suit:

Pour tout © = (1,29, ..., 7)), y = (Y1, Y2, ..., Yn) de E on pose:

Dl(‘ruy) = sup d ('T'L;yz)

1<z§p

Dy(z,y) = Zd i, Yi)
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On a

p
sup di(x;,y;) < Zdi($i7yi) <p sup di(x;, ;)

1<i<p — 1<i<p

Dl(xvy) S DQ(ZL‘,y)Sle(Qf,y)

Alors Dy et Dy sont équivalents telle que o« =1, 3 =p

1.1.3 Espaces métriques

Définition 1.1.3 On appelle espace métrique tout ensemble non vide E muni d’une dis-

tance. Un tel espace sera noté dans la suite (E,d).
Exemple 1.1.5 L’ensemble des nombres réels R muni de la distance usuelle
d(z,y) =z —yl zyek
est un espace métrique.

Exemple 1.1.6 Sur l’espace R", on peut défini plusieurs distances, on faisan intervenir
les distances entre les composantes. Soint x = (x1,..,x,) et y = (y1,..,yn) € E. On définit

deuz distances, a savoir:

i) = { o =

i=1,..,

et

di(z,y) = Z |z — vl

1=1,..,n

La troisiéme est celle qu’on appelle la distance euclidienne

da(z,y) = Z |z — il

i=1,..,n

Exemple 1.1.7 (Distance produit). Soient (X,dx) et (Y,dy) deuzr espaces métriques,

on peut définir une distance sur l’espace produit X x'Y par:

d[(x1,91), (T2, y2)] = sup {dx (21, 72), dy (y1,92) } -



1.2. Normes et espaces vectoriels normés

1.2 Normes et espaces vectoriels normés

1.2.1 Normes

Définition 1.2.1 Une norme sur un espace vectoriel E est une fonction continue de E
dans R, noté par:

z = |l

vérifiant les propriétés suivantes:

a) Ve e E, ||z]| >0 et (||z|| =0) <= (z=0), (séparation) .

b) YA e R, z € E, |\x| = |A.|z||, ou |\ désigne respectivement la valeur absolue si
k =R ou module si k =C, (homogénété) .

c)Ve,y € E, ||z +yl| < ||zl + |lyl|, (inéaglité du triangle) .

Exemple 1.2.1
t
()l = sup 221

tejo,1] V1412

est une norme Sur Rz car:

a)

V(z,y) € R%Vtel0,1]

|(z,y)]]| > 0 <= tes[lég] |51+Ttyt2| >0 car: |z —ty| >0 et VI+t2>0
V(z,y) e REVE€[0,1] , |(z,9)]| =0 (1.2.1)
|z + ty|
(1.2.1) <= tes[%% e =0
(1.2.1) <= |z +ty|=0
(121) <= z+ty=0
(121) <= 2=0Ay=0
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b)
V(z,y) € R? te0,1]

A (@, = Az, Ay
|Az + Aty|
= Sup ———
tejo,1] vV 1+t
= sup |} —|x +tyl
t€[0,1] V14t
= |\ sup —|m—|—ty|
te0,1 vV 1+ 2
= [Alll(z,y)]

V(z1,91), (12,2) € R? ,Vt € [0, 1]

[z, 91) + (@2, 92) = (@1 + 22), (Y1 + v2) ||
~ sup (1 + 32) +1 (31 + 92)]
t[0,1] V142
— swp |z1 + @9 + tys + tys|

t€[0,1] V1+t?

t t
< sup (|$1Jr Y| n |z + ?J2|)
tefoa] \ V1+t2 V142
’.771 —i—ty1| ’.732 +ty2|

SUp ——— + sup ———
te0,1] V1 +t2 V1412

donc
(21, 91) + (22, y2) | < (21, y0) || + [[(z2, y2) |

Exemple 1.2.2

1
p
VzeR", 1<p<oo ||lz], = (E \m!”)

i=1,..,n
Cette formule définit une norme sur R".
1.2.2 Normes équivalentes

Définition 1.2.2 On dit que deux normes ||z||,, ||z|, sur un ensemble E sont équivalentes

s’il existe deux constantes réelles [ > a > 0 telles que

allell, < llzlly < Bzl
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pour tous x,y € I .

1.2.3 Espaces vectoriels normés

Définition 1.2.3 On appelle espace vectoriel normé (E, ||.||) tout espace vectoriel E sur

le corps k=R ou C muni d’une norme.

Proposition 1.2.1 [10] Si (E,|.||) est un espace vectoriel normé, on définit la distance

associée 4 une norme par:

dyj(z,y) = ||z =y

On vérifie sans peine que les propriétés de (a) a (c) de la définition de distance sont satis-

faites.

1.2.4 Norme matricielle

Définition 1.2.4 soit ||.| une norme vectorielle sur E = R™.
On appelle une matricielle induite, par cette norme vectorielle, sur My(R), qu’on note
encore par

[+ A= Al = sup {||Az]|, = € R", [[zf| =1}

Ax
jal, = sup 122 _ Zw
lzl,=1 1zl 1<J<N
N N
2
1AL, = D) layl
i=1 j=1
| Az
A = sup = Za
e = s ol = o 7

Proposition 1.2.2 [2] Soit A € My(R)
1Al == p(4)

p(A) : Le rayon spectral d’une matrice A.

10



1.3. Suites de Cauchy et espaces complets

Exemple 1.2.3 Dans R"™ on peut définir plusieurs normes:

Izl = > a?
i=1,..,n

2]l = sup {[z:]}
i=1,..,n
lzlly = > il

i=1,..,n

Exemple 1.2.4 L’espace vectoriel C([0,1],R) peut étre muni des normes:

La norme euclidienne:

Que l'on note aussi ||x||,

| flloo = sup {|f(t)|}, (La norme de convergence uniforme).
te(0,1]

11 = / ()] de

I£ll, = / ()2t

Exemple 1.2.5 (Norme produit). Si (E,|.|z) et (F,|.||p) sont des espaces normés, on

peut définir une norme sur [’espace vectoriel E x F par:

(z.y) e ExF, |z y)l =sup{lzllz  lyllp}

1.3 Suites de Cauchy et espaces complets

1.3.1 Suites de Cauchy

Définition 1.3.1 On dit que la suite {x,}, .y dans l’espace métrique (E,d) est de Cauchy
81

Ve >0,IN. e N\\Vvn,m eN:n>m >N, = d(z,,z,) <e¢

On écrit alors:

d(xp, Tm) — 0

n,Mm—00

11



1.3. Suites de Cauchy et espaces complets

Exemple 1.3.1 (U,) = e " est une suite de Cauchy car pour tout couple d’entiers naturels

(n,m) tels que n > m:
Up = Up|=le"—e ™| =e™—e"<e™

soit € un réel strictement positif. Si e € [1,400[, linégalité e=™ < e est vraie quel que soit
Uentier m. Sie € ]0,1], cette méme inégalité est vraie pour tout m > —loge. Ainsi, il

suffit de prendre N. = [—loge]| + 1.

Exemple 1.3.2 On munit l’ensemble C ([0,1],R) de la distance fondamentale d; et con-

sideére les suites (fy),  n définies par: f, (x) = min (n, \%)

£ (x) = min (n %) _

dy (fos fm) = i | fo(2) = frm()| d
2 w7 (1 L 1
/O (n—m)dac—i—/n12 <—x—m>dx+/n12<ﬁ—ﬁ)dx
(1 m) (1 1) (1 1)
= (-=-Z)+2(—=-=)-m([—=-=
n n? m n m2  n?
1
T m n
1
< E

Il en résulte qu’il suffit de prendre N, = [ﬂ + 1 dans le critere de Cauchy.
Proposition 1.3.1 [10] Toute suite convergente d’un espace métrique (E,d) est de Cauchy:
Preuve. si lim (z,) = a, cela veut dire que:
Ve > 0,dN; tel que Vn > N, = d(zp,a) < ¢
Et donc

Vn,m > N% - d(xnwrm) < d(xn,a) +d(a,xm) < 55 + 5 =c.

12



1.3. Suites de Cauchy et espaces complets

Exemple 1.3.3 Par contre il y a des suites de Cauchy qui ne convergent pas:
dans lespace |—1,+1] la suite {1 — %}neN* est une suite de Cauchy, puisque la méme

suite converge dans R vers 1, mais 1 ¢ |—1,+1]

1.3.2 Espaces complets

Définition 1.3.2 Un espace métrique (E,d) est dit complet si toute suite de Cauchy dans
E converge (dans E).

Exemple 1.3.4 l'espace E = C ([a,b] ,R), muni de la distance fondamentale dy, est com-

plet. Soit (fy), ey une suite de Cauchy de E. On a:
Ve>03IN.eN/VnmeN: n>m>N., = do (fn, frn) < ¢
autrement dit:

Ve > 03N, e N/VnmeN:n>m >N, = sup |fn(x) — fn(2)] <e (1.3.1)

a<z<b

Il en résulte que pour tout x de [a,b], la suite (f, (z)) est de Cauchy dans l’espace

neN
complet (R, |.|). Elle est donc convergente. Soit f (x) sa limite. Il nous suffit a présent de
s’assurer que:

a) f est un élément de E.

b) nhj{)lo fa=f (relativement a d).

Pour le premier point, il suffit de montre que f est continue sur [a,b]. Considérons pour

cela un point xg de E. Il vient:

[f(2) = f(xo)l = [f(x) = ful@) + fu(x) = fulwo) + fal2o) — f(20)]
< f(@) = fu(@)] + [fal2) = falzo)| + [fa(0) — [ (o)

(1) (1) (I11)

FEstimons les trois quantités (I), (II) et (I1I). Soit € > 0, pour (I) et (III) on remarque
que:

AN.eN\n>N. = (I) <

Wl M

IN.eN\n>N. = (III) <

Wl M

13



1.3. Suites de Cauchy et espaces complets

Grace a la convergence de la suite (f, ()) D’autre part, il existe un réel p > 0 tel que:

neN"

[z —m| <p = (1) <

Wl M

En prenant N. = max (Ne, N;) on obtient:
|z =0l < p = [f(z) = flxo)| <e.

Donc [ est continue en xq, par suite, sur [a,b].

La seconde condition se démontre comme ceci:

Pour p > N. et x dans [a,b], tous deux fixés quelconques, on peut passer & la limites dans
la relation (1.3.1) quand q tend vers +00. En vertu de la continuité de la valeur absolue

on obtient:

Vp > N, Vo € la,b]: |fp(x) — f(z)] <e.

Donc

p=N. = sup [fy(z) — f(z)| <e.
a<x<b

C’est-a-dire

lim f, =f

n—-+00

Exemple 1.3.5 Soient (E;,d;) i = 1,..,n des espaces complets. Alors FE = H E;
i=1,...,n
muni de la distance produit do, = (di,..,d,) est un espace complet. En particulier, l’espace

produit R™ [’est aussi pour la norme produit.

Exemple 1.3.6 L’espace C ([0,1],R) muni de la norme |.||; n’est pas complet. Pour le
voir, il suffit de remarquer que la suite des fonctions continues

2" sit e [0, 3]

1 site[3,1]

o= tull = [
1

falt) =
est de Cauchy car:

|[fn(t) = fm(D)] dt
1 1 ‘

2(n+r1 m4+1

Si (fn),en convergeait, sa limite f(¢) devrait étre nulle dans I'intervalle [0, %] et égale

a 1 dans 'intervalle [%, 1}

14



1.4. Espace de Banach

1.4 Espace de Banach

Définition 1.4.1 Un espace de Banach est un espase vectoriel normé complet. Sur le corps

k des réels ou des complezes (R et C), avec leur normes usuelles de Banach.
Exemple 1.4.1 l'espace R" est un espace de Banach pour la norme euclidienne.

Proposition 1.4.1 [7] Tout espace vectoriel normé de dimension finie est un espace de

Banach.

1.5 Les contractions

1.5.1 Continuité

Définition 1.5.1 Soit deux espaces métriques (E,dg) et (F,dg) et f une application de
E dans F. Soit a un point de E.

On dira que ( f est continue en a ) si:

Ve >0, da>0\Vz € E, dp(zr,a) < a = dp(f(x), f(a)) <e

St Uapplication f est continue en tout point a de E, on dit qu’elle est « continue sur E »,

ou plus simplement ( continue ).

1.5.2 La continuité uniforme

Définition 1.5.2 On dit que f est uniformément continue sur E  si et seulement si:

!

Ve >0, 3a >0\ Vz,2 € E, dg(z,2) <a = dp(f(z),f(z)) <e

a(g) ne depend pas de z,x'.

15



1.5. Les contractions

1.5.3 Application Lipschitzienne

Définition 1.5.3 On dit qu’une application f : (E,dg) — (F,dp) est de Lipschitz (ou
Lipschitzienne) de rapport K > 0 (ou k — Lipschitzienne) si elle satisfait:

Vo,y € Edp(f(x),f(y)) < Kdg(z,y).

Exemple 1.5.1 Soit E C (Ry, |.|) et la fonction f définit par f(x) = {7 est Lipschitzienne

car:

V(l',y) € R+7
@ =0 = | T
r(l+y)—y(1l+x)
(1+2)(1+y)
rT+xy—y—yx
(1+z)(1+y)

|z -yl
(14+y)(1+x)
< |z -y

Donc [ est 1 — Lipschitzienne sur Ry donc elle 'est aussi sur R (puisque f impaire).

Corollaire 1.5.1 [10] Soit f dérivable sur un intervalle I.
Alors:

(f est Lipschitzienne sur I) <= < I "est bornée sur I ) )

Preuve.

( =) Supposons [ Lipschitzienne sur I :

I e Ry V(xy) el |fla)— fly)| < klz—y
f@) = f)

k<
|z —y|

<k
On déduit, par passage a la limite lorsque y tend vers x

k<[ (2) <k

16



1.5. Les contractions

Ceci, quelque soit « € I. Donc f " est bornée sur 1.

(<= ) Supposons f 'est bornée sur I :

!

IMeR: te, ‘f (t)‘gM

D’aprés I'inégalité des acroissements finis appliquée a f sur le segment [z, y]

|f(y) — f(@)] < M|y — 2|

Donc f est M — Lipschitzienne.
Evidemment, par contraposition on a pour f dérivable sur un intervalle /

(f est non Lipschitzienne sur [) <= ( f 'nest pas bornée sur I ) .

1.5.4 Applications contractantes

Définition 1.5.4 On dit qu’une applications [ est contractante si f K — Lipschitzienne

telles que 0 < K < 1.

Exemple 1.5.2 Soit £ = ([%,—i—oo[, ||), et f wune fonction définit de E dans R par

f (x) = % est contractante par ce que

Ve,y € F
B 2x+6_2y+6
10 - 10 = |org - g
14(y — x)
(B2 (3y+2)

IN

LN
_m_
16" Y
Te—y
= — |\ —
gle—y

Donc k = g.

17



1.5. Les contractions

Exemple 1.5.3 L’application x — +/x est uniformément continue sur R, , mais non Lip-

schitzienne.

Remarque 1.5.1 Finissant cette paragraghe par les implications suivantes:

(f contractante) = (f Lipschitzienne) => (f  uniformément continue) = (f con-

tinue).

18



Chapitre 2

Théoréme du point fixe de Banach

Dans ce chapitre nous présentons le théoréme du point fixe dans un espace métrique complet
et sa version dans un espace de Banach, avec des remarques sur le théoréme et la signification,

aussi quelques extensions du principe de 'application contracante.

2.1 Point fixe

Définition 2.1.1 On dit que a point fixe pour une application f si:

fla)=a
Exemple 2.1.1 Soit f wune fonction définie de R dans R par:
2x 4+ 6
On cherche les points fixes de f
flx)==2 (2.1.1)
2046
2.11) <= =
( ) 3T + 2
(21.1) «—= 32°=6
(2.1.1) <= 2*=2
(21.1) <= z=4V2

Alors f  admet deux points fizes dans R.

—_
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2.2. Théoréme du point fixe de Banach dans un espace métrique complet

Exemple 2.1.2 Soit g une fonction définie de R dans R par:
g(x) =1+ 2x
On chercher les points fixes de g
g(z) == (2.1.2)

(212) <= 1+4+2z==z

(2.1.2) <= az=-1
Alors g admet un seul point fixe dans R.
Exemple 2.1.3 Soit h une fonction définie de R dans R par:

T
h(z) =z + 5 arctan

On cherche les points fizes de h
h(z) =x (2.1.3)

(2.1.3) T+ g —arctanz =

2

s
arctanx = 5

=
(2.1.3) <= T _ arctanz =0
=

(2.1.3)

Ce qui est impossible car la fonction tan n’est pas définit a =. Alors h n’a pas de point

2
fixe dans R.

2.2 Théoréme du point fixe de Banach dans un espace
métrique complet

Théoréme 2.2.1 [8] Soit (E,d) espace métrique complet, toute contraction d’un espace

métrique complet E non vide dans lui-méme admet un point fixe et un seul .

Démonstration.

a) L’existence:
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2.2. Théoréme du point fixe de Banach dans un espace métrique complet

On va utiliser la méthode dite des approximations successive.

Soit zy un point quelconque de F, posons:

T = f(xO)a Tg = f(xl) = f 2($0)7 ooy Ty = f(l‘n—l) = f n($0)7

Nons formons ainsi une suite infinie xg, 21 22, ..., Ty, ... d’éléments de E. Nons allons
montrer que (), y est une suite de Cauchy. Comme f est une contraction, on a la suite

des inégalités :

d($2,$1) = d(f($1)7f($o))

S kd(.ﬁlﬁl, 270)
d(w3,x2) = d(f(z2), f(21))

S k‘d(l’g, £L‘1)

S ]{Z2d<l’1, .730)

(«Tn—i-l; xn) = d(f(xn)v f(‘rn—l))

< kd(zp, p_1)
< k"d(x1, )

A(Tryp, Tn) < d(@nip, Tnip1) + A Tnpp 1, Tngp2) + oo + (Tny1, Tn)
< (RBP4 RPE 4 4 k4 DE N (x, 30)

(k* + kP~' + ..+ k + 1) somme de (p+ 1) terme d’une suite géometrique.
Alors

1—k

On en déduit bien que d(xy+p, z,) tend vers 0 quand n tend vers +o0o, donc la suite des

d(xn+pa xn) S

d(l’l, 1‘0)

(n)nen est une suite de Cauchy par suite, elle admet une limite a, alors z,, tend vers a on
voit que z,+1 = f(z,) tend vers f(a) d’aprés la contituité de f, et comme x,,; tend aussi

vers a, on a bien a = f(a), et a est un point fixe.
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2.3. La version dans un espace de Banach

b) L’unicité:
L’unicité du point fixe est évidente, méme si E n’est pas complet.

Si a et b sont deux points fixes, on doit avoir

fla) = a, f(b)=10
d(a,b) = d(f(a), f(b))

f contraction

d(a,b) < kd(a,b) < d(a,b) si d(a,b) #0.

On a donc nécessairement d(a,b) = 0, a et b sont confondus (¢ =b). m

2.3 La version dans un espace de Banach

Théoréme 2.3.1 [6] Si f est une application contractante d’un espace de Banach E dans
lui-méme, alors f posséde un point five unique a € E, qui est par défnition la solution
unique de [’équation

fl@) =1

de plus la suite {xy}, . , dite des approzimations successives, définit par:

xo donné dans E
Tpi1 = f(2n)

CONvVeErge vers a.

Démonstration. On va suivre la méme démarche que la démonstration précédente:
a) Existence d’une solution:

La suite {,},.y est une suite de Cauchy. En effet posons p entier positif:

[Zntp =zl = [1f (@nsp-1) = flna)

< klTnip-1 — Toall

Par récurrence on obtient:

||37n+p — x| < K" ||xp — |
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2.4. Remarques

D’autre part
[z = @ol| < (| — pall + |2 — pal| + ... + (|21 — o]
Soit
2y — @oll < (K7 + K77 + .+ k4 1) |21 — o]

(kP + kP~ + ...+ k + 1) somme de (p + 1) terme d’une suite géometrique, alors

1 — gptl

|z, — 2ol < T |1 — ol

On utilise I'hypothése de contraction k < 1 et on obtient:
1
lzp = @oll < 7 ller — ol
d’ou
n
|2ty = 2all < T llo1 = 2o

Donc la suite {x,}, .y est une suite de Cauchy qui converge vers une limite a dans ’espace

complet E. Cette limite vérifie

fla)=a

b) Unicité de la solution:

Supposons 'existence de deux solutions a; et as, ’hypothése de contraction entraine:

1f(ar) = flaz)|

< kllar = aof

a1 — as|

A\

la; — agl|, car k < 1

donc contradiction et a1 = a. =

2.4 Remarques

Remarque 2.4.1 Le procédé précédent donne non seulement l’existence du point fixe, mais
une méthode pratique pour le trouver. En outre la suite des {xn}nEN est rapidement conver-

gente. On a en effet:

n

1—kn

[0, all = T |z, 2y || < 271, ol
p——+00
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2.4. Remarques

Remarque 2.4.2 Si f est une application Lipschitiziene (pas nécessairement une contrac-
tion) mais l'une de ces itérées f¥ est une contraction, alors f a encore un point five et un

seul. Ceci résulte de lunicité.

Corollaire 2.4.1 [8] Une application d’un espace métrique complet dans lui-méme dont une

itérée est contractante posséde un point fize unique.

Preuve. Soit (F,d) un espace métrique complet, et f : £ — FE une application. On

suppose qu’'une itérée de f est contractante, c’est-a-dire qu’il existe un entier p > 1telque

fP :fofofro...oi

p fois

p tacteurs) soit Lipschitzienne de rappor < L. apres pothése précédent,
fact it Lipschitzi d t k < 1. D’aprés I’hypothé écédent, fF

posseéde un point fixe unique x. On a

donc f(x) est un point fixe de {f,} Mais comme z est 'unique point fixe de f¥ , on a

neN’

f(z) = x, ce qui exprime que x est un point fixe def.
Supposons que y soit un autre point fixe de f. On voit immédiatement que y est aussi un
point fixe de f. Donc en raison de I'unicité du point fixe de ¥ , z =v.

n
Corollaire 2.4.2 [13]| Soit (E,d) un espace métrique complet et soit
B(zg,r) ={z € E, d(x¢,x) <1}

ouxg €E etr>0:

Supposons que f : B(xg,r) — E est une contraction avec:
d(f (zo),w0) < (1 —Fk)r.
alors f admet un seul point fize dans B(xg, 1)

Preuve. 1l existe rg avec 0 < rg < r tel que d(f (xg),x0) < (1 — k) ro.
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2.4. Remarques

Nous montrerons que f : B(xg,rg) — B(xg,ro). En effet si x € B(x,70), alors

d(f(z),z0) < d(f(z),f(z0))+d(f(x0),20)
< kd(x,z0) + (1 —k)ro
<

To

Nous pouvons appliquer le théoréme du point fixe dans ’espace métrique pour déduire que
f aun seul point dans B(xg,ry) C B(xo,r). Encore, on peut montrer que f a un seul point

dans B(zg,7) =

Remarque 2.4.3 On peut remplacer la condition de contraction de f par la condition
sutvante:

sup’f/(x)‘gk, k<1

On a:

Corollaire 2.4.3 [14] Soit f : ]Ja,b] — R une fonction dérivable sur |a,b[. Alors f wune

contraction si seulement si:

sup
a<x<b

Preuve. Supposons que sup |f "(z)| = k < 1, soient z,y € ]a, b[. D’apreés le théoréme

a<xz<b

des accroissements finis: f(x) — f(y) = (x —y) f ' (£) avec & € |y, x|, d’ou:
F@ = fwl = le=l|f " ©)
< klr—yl

D’ou f est contractante

Réciproque: f est contractante
Va € Ja,b[, Vi tel que z +n € Ja,b[: [f(z +n) — f(z)] < kIn]

et pour  # 0

'f($+77)—f($)
U

d’ou ’équivalence. m
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2.5. La signification du théoréme du point fixe de Banach

2.5 La signification du théoréme du point fixe de Ba-
nach

L’application de ce théoréme nous donne des résultats qui sont d’une importance fondamen-
tale dans I’analyse non linéaire

Citons quelques un

- Existance de la solution.

- Unicité de la solution.

- Stabilité de la solution sous une petite perturbation de I’équation.

- Existance de la convergence des méthodes d’approximation.

- Stabilité des méthodes d’approximation.

Et pour achever ce paragraphe, nous allons montrer que les hypothéses du théoréme du
point fixe de Banach sont essentielles:
Si nous en négligeons seulement une, alors le point fixe n’existe pas.

1) E n’est pas stable par f:
flz)=Va?2+1sur £ =10,1]
or £/ est fermé dans R, et complet car R est complet. De plus:

f(z) = 1= (sup ’f / (x)’ < 1) = (f est contractante)
2 +1 el

mais f n’a pas du point fixe car:

f(0,1]) = [1, \/ﬂ ,i.e. F/ n’est pas stable par f

2) considérons l’espace suivant : F' = {z € R : 2 > 1} muni de la métrique

d([E,y)ZlI—yl, anyEE
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2.6. Extension du principe d’application contractante

soit f: F — E tel que :f(x):m—i—%alors:

d(f(z), f(y) = |f(@)—fW)
y
1 1‘
= [T—y——+—-
y xr
Ty
1
~ femva- 1)
SR i
Ty
< |z -yl
= d(z,y)

donc

c’est-a-dire:

Pk <1tel que: d(f(x),f(y) <kd(r,y) Vz,y€E

on vérifie que f ne posséde aucun point fixe dans F
En effet: f(z) =z = 1 =0 impossible.

3) E n’est pas complet
_ sinx

fo=2

T
E:}O, —]
sur 1

or f(]O,ﬂ) zlo,gl C}O,ﬂ,et igg|f’(m)]:%<1

Donc f est contractante mais £ n’est pas fermé dans R donc il n’est pas complet.

2.6 Extension du principe d’application contractante

Le principe du point fixe a connu de diverses extensions.

aborder quelques extension
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2.6. Extension du principe d’application contractante

2.6.1 Extension de Boyd et Wong

Elle consiste a remplacer la contraction par la ¢ — contraction dont nous donnons la défi-

nition:

Définition 2.6.1 soit E un espace métrique et f une application de E dans E. On dit que
f est une p — contraction, s’il existe une application ¢ semi-continue supérieurement de

[0, 00[ dans [0, c0lavec ¢ (r) < r pour r > 0 telle que:

Vo,y € B, d(f (z), f(y) <¢(d(z,y))

Le résultat suivant va assurer [’existance d’un unique point fixe pour une telle applica-

tion.

Théoréme 2.6.1 [14] Toute p — contraction d’un espace métrique complet dans lui-méme

admet un point fixe unique.

Remarque 2.6.1 La contraction est un cas particulier de la p— contraction (il suffit de

prendre ¢ (r) = kr pour tout r > 0,0< k<1 ).

2.6.2 Extension d’Edeltein

Théoréme 2.6.2 [14] Soit (E,d) un espace métrique complet et f : E — F une application
telle que

d(f(x), f(y)) <d(z,y), Yo,y € E, x #y (2.6.1)

Supposons qu’il existe y € E, tel que les itérations de {x,} données par

neN

Tp =Y

possédent une sous suite {x,. + avec lim z, =x € E.
J - J
J—+o00

Alors x est point fize de [ et il est unique.

Remarque 2.6.2 1) L’application f : E — F avec la propriété (2.6.1) ne donne pas
le méme résultat que le théoréme (2.6.1) mais si E est complet alors [ avec la propriété
(2.6.1) est une ¢ — contraction.

2) Le résultat précédent (d’Edeltein) a une importante conséquence qui est:
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2.6. Extension du principe d’application contractante

Théoréme 2.6.3 [14] Soit (E,d) un espace métrique complet et f: E — F  telle que:

d(f(z), f(y) < d(z,y), Vo,y € E, x #y

En plus, supposons que f : E — K ou K est un sous-ensemble compact de E alors f

posséde un unique point fize dans E.
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Chapitre 3

Application du théoréme du point

fixe de Banach

Dans ce chapitre, nous présentons quelques applications du théoréme du point fixe de
Banach.

Ces applications incluent les théorémes d’existence de solution pour les équations dif-
férentielles ou les équations intégrales et ’étude de la convergence de certaines méthodes

numériques comme la résolution des systémes linéaires.

3.1 Application aux équations intégrales

3.1.1 Equations de Fredholm

On considére un réel A, une fonction numérique réelle g continue sur un intervalle fermé
la, ], et une fonction réelle K de 2 variables réelles continue sur le pavé fermé [a, b] X [a, b].

Le probleme intégral de Fredholm s’écrit:

Trouver la fonction f définie sur [a,b] telleque:

b
f2) = A / ko, 9) f(y)dy + glz) Vo € [a,b]

On se place dans P'espace C'([a, b]) des fonctions continues muni de la norme du max

(3.1.1)

[flle = sup [f(2)]

z€la,b]
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3.1. Application aux équations intégrales

On pose ( K est continue sur [a, b] X [a,b] ):

M= sup |k(z,y)]
(z,y)€la,b] X [a,b]

et on obtient aisément par application du théoréme du point fixe le résultat suivant:

Théoréme 3.1.1 [6] L’équation de Fredholm admet une solution unique dans C'[a,b] a la
condition suffisante que:

INM(b—a) <1

Démonstration.
1) (C(la,b]),]]-||.,) est un espace de Banach.
2) L’application T" définie par

f—=Tf ouw
Tf(z) = A / ke, 9)f(y)dy + gla) Vo € [a,]

est une application de C([a, b]) dans lui méme. En effet:
b
Tf(zo+h) = Tf(xo) = /\/ (k(zo + h,y) — k(zo,y)) f (y)dy + g(zo + h) — g(xo)
ou
b
T f (2o + h) = Tf(wo)| = [l / |(E(2o + hyy) = k(zo, ) [ ()] dy + |g(wo + h) = g(x0)]

et le résultat en utilisant la continuité de K et celle de g.

3) L’application T" est une contraction:

b
Th(@) = Thie) = [ ban) () - L(w)dy
donc comme K est bornée par M dans [a, b] X [a, b]

Th(z) =Th)| <AMO-=a)lfi-Lfll, Vrelab

On obtient:
[T f1(z) = Tfa(z)|| < [A M —a)llfi = fo
Avec
k= |\M®b-a)<1
| |

31



3.2. Application aux équations différentielles

Remarque 3.1.1 On pourrait remplacer la condition ci-dessus par la condition suivante:

b
sup\)\|/ |k(x,y)|dy <k <1

3.2 Application aux équations différentielles

3.2.1 Théorémes d’existence et d’uncité du Cauchy-Lipschitz

Soit I’équation différentielle

y' = fz,y) (3.2.1)

Définition 3.2.1 (Fonction de Lipschitz) On dit que la fonction f vérifie la condition

de Lipschitz par rapport a y sur l'intervalle U  si

V(z, 1), (z,y2) €U [f(z,mn) — (@, 92)] < Ky — ve
k : est appelé le constant de Lipschitz.
Proposition 3.2.1 [11] Si la dérivée f,/ (dérivée par rapport a y) existe et verifie:
|fy’(x,y)‘ < M, M réel positif.
Alors f est satisfait la condition de Lipschitz.

Preuve. On a

Va,y |f'(x,y)| <M

En appliquant le théoréme des accroisements finis pour les deux point (z,¥;) on trouve

f@p) = f(@,92) = f,/(@,9)0—v2) 11 <<y
|f(x,y1)—f(x,y2)| = }fy,(x7§)’|yl_y2|
< My — o

Donc f verifie la condition de Lipshitz avec k =M . m
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3.2. Application aux équations différentielles

Proposition 3.2.2 [11] Soit l’équation différentielle (3.2.1) avec la condition initiale y(zo) =
Yo dite le probléme de Cauchy

y'(z) = flz,y(x))

ot [ est une fonction continue (3.2.2)
y(xo) = yo

le probléme (3.2.2) est équivalent & l’équation intégrale

mm=m+/ﬁmmmw (3.2.3)

Preuve.
( = ) Supposons maintenant que y est une solution du probléme de Cauchy (3.2.2). On
a alors ¢/ (x) = f(x,y(z)) et y(zo) = yo. On peut intégrer 3 par rapport a ¢ car y'(t) =
f(t,y(t)) et t — f(t,y(t)) est continue sur un segment et donc intégrable sur le méme

segment. Alors on obtient

/“y@wzifvﬁw@»ﬁzw@mwzmm—ymwzyu»—m

donc, on a bien
va) =w+ [ Fle®)

( <) Par dérivation de I’équation intégrale on obtient

ym=Mﬁmmﬂ=ﬂmm>

!/
T
)z on intéeral ofai 1 dition initial
L’équation intégrale satisfait aussi la condition initiale

mw:%+/7wmmw:mw:/ﬂwmmw=o

o

Lemme 3.2.1 [11] Toute solution du probléme de Cauchy (3.2.2) est une solution de l’équation

intégrale (3.2.3).
Théoréme 3.2.1 [11] Soit U un domaine défini comme suit

U= {(z,y) € R* telle que |z — xo| <a,|y—yo| <b}
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3.2. Application aux équations différentielles

ot (o, o) est un point five de R?, si la fonction f (x,y) est continue et vérifie la condition

de Lipschitz par rapport a y on a:

‘f(xay) - f(ajanO)l <k ‘y - y[)’

k: appelé le constant de Lipschitz. Alors ’équation différentielle admet une seule solution
y = ¢(x) sur Uintervalle [xg — h,xo + h] ou h = min {|xg — al, |yo — b|} vérifiant la condi-

tion initiale y(xo) = yo.

Corollaire 3.2.1 [11] On utilise la méthode des approximations successives. On a

y'(x) = flx,y(x))

) = 1o ' ty(t))dt 3.2.4
Lt e o = [ sta00) (3:2.4)

On cherche a trouver la solution approchée de l’équation (3.2.4) . Nous prenons l'approzimation
de degré 0 de la fonction y,po(x) = yo st = € [xg— h,xo+ h|. Cela signifie que yy +
f;) f(t,@o(t))dt est bien définie en fonction de x. On définie, ¢, par

%@=%+/7m%@w

telle que @, (x) est continue sur l'intervalle [xg — h,xo + h] et vérifie p,(x¢) = yo. Définissons

par récurrence

%m:m+/ﬁw%¢@w (3.2.5)

Corollaire 3.2.2 [11] Cette derniére relation représente une suite des fonctions {¢, ()}, o
continues sur l'intervalle [xg — h,xo + h| vérifiant la condition initial ¢, (x) = yo.

Alors il faut montrer que:

1) La suite ¢, (x) converge uniformément vers la solution exacte.

2) La limite de la suite, p,(x) est une solution de l’équation intégrale (3.2.3).

3) La solution est unique (la limite de la suite p,(x) unique).

Preuve.

1) Pour montrer la convergence uniforme, on construie la suite

Sn =y + (‘Pl - 900) + (902 - <P1) + <903 - ‘PQ) + ot (9% - <Pn—1)
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3.2. Application aux équations différentielles

On a:

Cela signifie que la série et la suite convergent vers la méme limite.

Comme

[y1(z) — vol
Yo + / f(t00(t))dt — yo

T

M/d
o

< M|z — x|

|01(2) = @o()]

IN

Alors, en appliquant la condition de Lipschitz, on a:

() — 1 (2)] =

yo+/x: f(t,sol(t))dt—yo—/; f(t, soo(t))dt‘

/ C (o) — £t ool de

Zo

3 _‘Po(t”dt

A
ol
i

VAN
=
T~
|
~
o
U
~

z0

1
—kM |z — xo|?
2

IN

|z — a:0|2
2!

IN

kM
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3.2. Application aux équations différentielles

|03(2) = @a()]

IA

IN

IN

IN

m+l?m%mm—%—éyw%@w\

[ Utteno) - sl ar

comme |z — x| < h, d’out [py(2) — @1 (x)| < 5EMR? et |ps(x) — py(2)| < 5:k2Mh3, par

réccurence on obtient:

Alors

lon (@) =y (2)] <

Mkn_lhn

n!

©o + (1 — o) + (g — 1) + (03 — ©3) + .. + (p, — ©n1)

1 1 1

M M (kR)? M (kh)? M (kh)"
< ot (Rh) o e e
M kh)? kh)3 kR)™

Converge vers 1o + 4 [exp(kh) — 1] quand n tend vers +oo.
i

Donc la série est uniformément convergente, alors la suite ¢, () est uniformément con-

vergente sur l'intervalle [xg — h, zog + h]. Comme ¢, (x) est une suite des fonctions continues.

Dong, la limite est une fonction continue sur lintervalle [zo — h,zo + h] .

2) Montrons que ¢, () est la solution de I’équation intégrale (3.2.3). Comme la fonction

f(z,y) est continue sur U. Alors, f(z,¢,(z)) converge vers f(z,¢(x)) quand n tend vers
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3.2. Application aux équations différentielles

+00. Par passage a la limite pour les deux nombres de 'équation (3.2.5). On trouve:

o) = yo + / " ft ol0))de (3.2.6)

Alors ¢(z) est une solution de I’équation intégrale (3.2.6), donc une solution du probléme
de Cauchy(3.2.2).

Comme |p, () —yo| < b, Yn=0,1,2,.... Alors |p(z) — yo| < b . Donc, la fonction p(z)
est solution de I’équation différentielle ¢ = f(x,y), reste dans le domaine U et réalise la
condition suivante

y(wo) = vo, (v = @(x, 0, %0))
3) L’unicité de la limite
Soit ¢*(x) une autre solution de I’équation intégrale (3.2.3), y = ¢*(z,x0,yo) sur

Vintervalle [xg — h*, xog + h*] telle que h* < h, ©*(z) = yo + f:; f(t,o*(t))dt . On a:

o (@) — " (x)] <

< / 1 F(ton (1) — (b7 (0)] de
< k[ e - (0] d

Pourn=1:

T

St @ (t))dt

Zo

< M|z — o

IN

|po(2) — ()]

Pour n =2

(@) — (@) < K / " loo() — o ()] de

0
|x—x0\2

< kM
- 2

Par récurrence, on trouve que pour tout n € N*

|z — zo|"

ou(a) =@ (@)| < KT
M (k |z — x])"
-k n!
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3.2. Application aux équations différentielles

converge vers 0 quand n tend vers +o0o quelque soit = € [xg — h, 29 + h].

Enfin, |, (z) — ¢*(z)| converge vers 0 quand n tend vers +oo donc p(z) — ¢*(z) = 0,

alors ¢(z) = ¢*(x). m
Exemple 3.2.1 Soit le probléme de Cauchy suivant:

y = f(z,y) =22(1 +y)
y(0) =0

Ce probléme est équivalent a l’équation intégrale
w) =0+ [ (e yle)dt, avee (o.00) = (0.0
xo
Soit la suite de récurrence définie par:
o= =0, @,(z) =yo+ /x ft, @na(1))dt
o
Donc pour n=1

or(8) = w0+ / "1 po(t))dt

_ /O "0yt

= / 2tdt
0

= [#l,

Pour n=2
po(z) = yo+/zf(t, p1(t))dt
= /xf(t,ﬁ)dt
0
= / 2t(1 4 t*)dt
0

"
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3.2. Application aux équations différentielles

Pour n=3

%w:=%+/3w¢ﬂmﬁ

= /ftt2

= / 2t(t2+t2)dt

67"
- [av5),
_a: xﬁ
_2 6

T - 132 g
_ /xo f(t, on_1(t))dt (k:!)

On étudie la convergence. On a:
flz,y) = 22(1+y)
Soit ('rayl)7 (Ia?ﬁ) S D(f)

|f(z,y1) — f(zoy2)| = [22(1 +y1) — 22(1 + ya2)|

= |2$(yl — 92)|

IA

22 |y1 — v2

< Ely — el
Choisissons un domaine borné de R>

D={(xy)€® / |z|<a, |yl <b/abeR}
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3.3. Résolution des systémes linéaires

On peut appliquer le théoréme de Cauchy-Picard sur cet intervalle, alors k = 2a et la suite

(p,,) est convergente uniformément.

pulr) = (xk!)

quand n tend vers +00.

Solution exacte

/

Y
1+vy

v =2zx(1+y) = =2z = y=rcexp(2*) — 1

Nous avons

y0)=0 = ¢c—1=0 = c=1

Alors
Yy = exp ({L’2) -1
3.3 Résolution des systémes linéaires
[15] On se propose de résoudre le systéme linéaire:
Axr=B

n équations et n inconnues (A est une matrice carrée n x n donnée, B une matrice colonne
donnée, X est la matrice colonne cherchée)

Posons M =1 — A, ou l estla matrice unité, et:
f(z)=Mzx+ B.
La résolution de Az = B est équivalente a la recherche d’un point fixe de f, en effet:

f@)== (3.3.1)
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3.3. Résolution des systémes linéaires

3.3.1 Mzx+B==x

3.3.1

(3.3.1) «

(331) & (I-Az+B=z
( ) © x—Ax+B=ux
(3.3.1)

331) & Ax=B

Bien entendu, le fait que f soit ou bien ne soit pas une contraction stricte va dépendre
du choix de la distance qu’on mettra sur R, (ou C,,):

Pour z = (&,...,¢,)ety = (14, ...,m,), prenons d’abord sur R™ la distance doo(z,y) =
max |§; — n,|. Notons: M =

On a:

(ai;) 1<i,j<n’

doo |[f(2), f ()| = do (Mz+ B, My + B)

= max |M.(z — y),|

1<i<n

n

Z ai; (& — ;)

J=1

n
o (bl
]:

= max
1<i<n

IN

IN

n
max E a; .max‘ }
1<i<n \ 4 |Z’J’> 1<j<n &=
n

= max Z\ai,j!) doo(,Y)

J=1

Et donc f sera une contraction stricte lorsque M = I — A vérifie :
n
[1M]],,00 = max (ZW@H) <1
j=1
On vérifier que si I'on prend sur R™ la distance di(z,y) = >, |§; — n;], on tombe sur

= i (Z lawl>

1
et en fin que si l'on prend da(z,y) = (31, 1€ — 1] )2 On tombe sur la condition:

1My =Y ) gl < 1.

i=1 j=1

la condition sufisant:
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3.3. Résolution des systémes linéaires

3.3.1 Meéthodes itératives pour la résolution des systémes linéaires

On va voir un type de méthodes itératives de résolution du systéme linéaire: Ax = b sous

la forme:
2(© vecteur arbitraire
(3.3.2)
5D = Bx®) f ¢ k>0
Lorsque
Az =b < z =Bz +c
La matrice B et le vecteur ¢ sont en fonction de A et b.
Définition 3.3.1 La méthode itérative (3.3.2) est convergente si
lim z® =z, vz(©
k—+o00
Remarque 3.3.1 [12] Si on pose e®) = 2% — 2 pour k € N, comme v = bx + ¢ et
5D = bz®) L ¢ on a
e® — BptD _ By = Beth-D — = BkeO)
lim 2 = 2 <= lim e® =0 = lim B*® =0
k——+oo k—-+o0 k—+o00

Donc La méthode itérative (3.3.2) est convergente si

lim B*v =0, Yo
k——4o0

Ce qui équivaut a

lim || B*»| =0, Vo
k—4o00

Pour toute norme vectorielle ||.|| .

Convergence des méthodes itératives

Théoréme 3.3.1 [12] Les propositions suivantes sont équivalentes:
1) La méthode itérative (3.3.2) est convergente.
2) p(B) <1, (p(B) : le rayon spéctral d’une matrice B ).

3) ||B|| = 1 pour au moins une norme matricielle subordonné ||.|| .
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3.3. Résolution des systémes linéaires

Démonstration.

(1) = (2) Supposons p(B) > 1, p(B) = || donc existe un vecteur p : p # 0,
Bp = pet|\| > 1 = Yk >0, ||B*| = | \p|| = || lIpll = N [Ipll = |12l

Ce qui contredit lim B*p = 0.

k——+o0
(2) = (3) Il existe au moins ume norme matricielle subordonné telle que:

Bl < p(B) +¢

(3) = (1) Soit [|.|| une norme matricielle subordonné. On utilise alors la propriéteé:

vk > 0, Vo, |[BM|| < ||B]. lvll < 1B]" - [lv]

IB| < 1 = lim |[|[B*|=0 = lim ||B"| =0
k——4o00 k—+o00

Meéthodes itératives

[12] Ces méthodes sont des cas particuliers de la méthode:

A= M — N avec M inversible et assez simple. On aurait alors:

Ar =b
(333) < (M—N)z=b
(3.33) <= Mzx=Nzx+b
(333) <= wx=M'Nae+M"
(333) <= z=Bxr+c

Avec B= M"'N et ¢ = M~ 'b.

43

(3.3.3)



3.3. Résolution des systémes linéaires

Meéthode de Jacobi

[12] En posant A= D — (E + F) ,M = D est la diagonale de A et N = E + F.

Ar=b <= Dx=(E+F)z+b

On suppose que D est inversible, c’est dire a; #0,1 <7 <n

la matrice

est appelée la matrice de Jacobi.

A chaque étape, on calcule les n composantes

.

\

J = D—l(E +F)=1,+ DA (3.3.4)
z©  donné,
(3.3.5)
Dz*+) = (E + F)z® +b, k>0
anxgk“) = a12$§k) — = aat) + by
aggl'g]ﬁd) = a21x§k) - a23xi(’sk) T T a2n:c7(’bk) + b (336)
annxT(“LkJrl) = anlxgk) e T a/nn—lngk—)l + bn

Exemple 3.3.1 On utilise la méthode de Jacobi pour résoudre le systéme suivante:

= =N Ot

On obtient: ) =

2 11 1 29 0
6 2 1 N B e
2 7 2 T3 26 0
128) \ 19 0
3.950 3.9956 3.99973
3074 | o _ | 30035 | g | 300026
2.019 1.9985 1.99992
1.036 1.0003 1.00005

T
La solution approche coneverge vers la solution exacte x = < 4 3 21 ) .
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3.4. Approche numérique du théoréme du point fixe

3.4 Approche numérique du théoréme du point fixe

Dans ce qui suit, on étudie une application du théoréme du point fixe en faisant appel a une
méthode itérative convergente .

Soit f: E— H"n €N H compact

(21,2, 0) € B = [ (2) = (f1(2), fo(), ..., ful))

On impose les conditions suivantes sur F et f :
E est ensemble fermé de H".

f est une application contractante sur E:

30 < K <1tel queVa,y € E,|[f(x) = f(y)l| < K|z -yl

||.|| est une norme quelconque dans H" S est stable par [ : f(F) C f(F)

Théoréme 3.4.1 [14] Soit E est une partie fermé de H" est f une application définie sur
E et a valeur dans E , constante sur E ,telle que x € E — f(z) € E. Alors admet
un unique point fixe x*dans E.Ce point five est calculable comme limite de la suite des

approximations successives (x;);>o

xg € E quelconque

(3.4.1)
Tiy1 = f(xl),l eN
Pour tout indice | € N* | on a les inégalités de majoration d’erreur suivantes:
* K!
o =211 < 5 ot = ol 52

* 1
|z — 2| < =% |11 — |
Remarque 3.4.1 Ce théoréme reste vrai dans le cadre générale d’un espace vectoriel quel-

conque (de dimension infinie ) a condition qu’il soit complet pour la norme en question.

Voici un exemple ot est mis en oeuvre le procédé itératif précédent.

Exemple 3.4.1 calcul de la racine carrée d’un nombre positif
Soit ¢ € R un nombre positif. Le théoréme du point fize précédent va nous permettre de

développer une méthode de calcul de \/c et justifier sa convergence. Pour ¢ € R soit
1

f@) =G+ )
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3.4. Approche numérique du théoréme du point fixe

Calculons ' et f”

1 c_la:z—c c

. " —
et seconde: f"(x) = =

=5 5% "3 2

On déduit que f' s’annule dans un seul point \/c, que f'(x) est négative sur|0,/c[, positif
sur [/c, 0o ,avec décroissance de f sur]0,+/c|] puis croissance sur [\/c, 00| .Par ailleurs, on

remarque que +/c est point fize de [ : f(\/c) = 3(\/c+ %)= Ve.
Sur I = [\/c,00| la dérivée vérifie 0 < f'(x) < 3, il en découle que f est contractante sur

Uintervalle [\/c, 00 de constante 6 = 5. En effet Voi, 20 € I on a
|f (1) = f@2)] = [(w1 — 22) f(E)] avec € € |, mo
Selon le théoréme des acroissements finit. D’ow linégalité :

1
|f(z1) = f(22)| < 5 |zy — xa| Vay,x9 €1
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3.4. Approche numérique du théoréme du point fixe

Exemple 3.4.2 D’aprés le graphe de f on a linclusion f(]0,+oc[) C I. On peut donc
appliquer le théoréme du point fixe sur l'intervalle fermé I: il existe un unique point fixe sur
I pour f (c’est \/c) qu’on peut déterminer par:

Vyel, yz+1=f(yl)=%(yl+i)a I>1
De plus pour | > 2 on a l'inégalité:

(0.5)"*
— 0.5

[y — | < Y2 — 11| = (0-5)172 Y2 — 11|

Par ailleurs, si on prend xy quelconque dans |0, +oo[ alors les termes y; 11 = f(y;) pour
[ >0 restent dans I et la suite (1), converge vers Ve d’aprés ce qui précéde et 1'inégalité

de magoration d’erreur s’écrit alors, toujour pour | > 2,
lz; — ¢| < (0.5)72 |2y — 24|
Par exemple pour ¢ = 2 on a, en partant de o =1 :

Ty = 1.5

ry = 1.4166...

r3 = 1.41421568274...
rqy = 1.414213562374...
x5 = 1.414213562373...

On constate que la covergence vers V2 = 1.4142135623731... est trés rapide et on vérifie

bien linégalité de majoration d’erreur donnée plus haut:
‘:1:5 - \/5‘ 1073 < 0.5% |29 — 1] 0.01

Remarque 3.4.2 La touche \/d’une calculatrice utilise ce méme procédé itératif con-

vergeant pour déterminé la racine carrée d’un nombre positif quelque soit le point de départ

dans RY..
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Conclusion

Le théoréme du point fixe est un outil fondamental pour la résolution de plusieurs
problémes d’analyse que ce soit théorique ou pratique.
Le but de ce travail est I’étude du théoréme du point fixe de Banach basé sur les applications
contractante dans un espace métrique et sa version dans espace vectoriel normé complet .
En basant sur la démonstration qui offre une méthode numérique pour la recherche de
solution approchée.
En terminant par les application analytique sur ce théoréme plus des application algébrique

et numérique.
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Résumé

Dans ce travail, nous proposons le théoreme du point fixe
de Banach, en référence a 1'importance de leur démonstration
qu'est l'approximations successives. Enfin, nous présentons
différents modeles sur leurs applications en matiere d'analyse
mathématique, numérique et algébrique.

Mots-clés: espace métrique, suite de Cauchy, espace de
Banach, application contractante, point fixe, approximation
successive.

Abstract

In this work , we have proposed the Banach fixed point
theorem, with reference to the 1importance of their
demonstration which 1s successive approximation , finally we
have consider different models of fixed point applications in
mathematical analysis material, numerical and algebraic.

Key words: metric space, sequence Cauchy, Banach space,
contracting application, fixed point, successive approximation.
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