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Notations générales
E ensemble non vide.

R ensemble des nombres réelles.

R+ ensemble des nombres réelles positive.
@u
@v

la dérivée directionelle vers l�extérieure.

d distance.

k:k norme.

f application.

fxng suite.

d1 =
nP
i=1

jxi � yij :

d2 =

�
nP
i=1

jxi � yij2
� 1

2

:

d1 = max
1�i�n

jxi � yij :

kAk1;1 = max
1�i�n

 
nP
j=1

jaijj
!
:

kAk1;1 = max
1�j�n

�
nP
i=1

jaijj
�
:

kAk2;2 =
nP
i=1

nP
j=1

jaijj2 :

B (x0; r) boule ouvert de centre x0 et rayon r.

B (x0; r) l�adhérence de B (x0; r) :

C ([a; b]) espace des applications continues.
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Introduction

Le théorème du point �xe a une trés grande importance taut théorique que pratique. En

e¤et, de très nombreux problèmes peuvent se présenter sous la forme de recherche du point

�xe.

Ce théorème a un champ d�applications très vaste, et il rend encore bien des services à

l�heure actuelle, tant en mathématiques pures qu�en mathématiques appliquées.

pour nous on s�interesse dans ce travail au théorème du point �xe de Banach qui présente

la base de la théorie du point �xe basé sur les applications cantractantes.

Le théorème du point �xe de Banach est à la base de la démonstration de princi-

paux théorèmes d�analyses: théorème d�inversion local, théorème des fonctions implicites,

théorème d�existences et d�unicité des solutions d�équations di¤érentielles et intégrales.

Du point de vue pratiques, la démonstration du théorème basé sur les approximations

successives o¤rant un algorithme de recherche du point �xe plus un contrôle sur l�erreur

commise.

Révenons à notre travail, cette mémoire est composé de trois chapitres:

le premier chapitre est consacré aux notions et résultats générales utiles pour la suite.

Tant qu�au deuxième chapitre, on propose notre théorème avec une démonstration bien

detaillée plus des remarques importantes. par la suite, on va étudier des extensions du

théorème basés sur la notion de contraction.

Dans le dernier chapitre, on a choisit des problèmes d�analyse où intervient le théorème

du point �xe pour l�existence et l�unicité de solution, et un modèle numérique où on approche

de la solution a partir de ce théorème.

En terminant cette mémoire par une conclusion dont on résume notre travail.
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Chapitre 1

Préliminaires

Ce chapitre a consacré à l�introduction de quelques notions fondamentales et certains déf-

initions des espaces métriques qui seront utiles pour le développement ultérieur de notre

travail. Nous faisons également un rappel du certains théorèmes et des résultats que nous

utiliserons dans les chapitres 2 et 3.

1.1 Distances et espaces métriques

1.1.1 Distances

Dé�nition 1.1.1 Soit E un ensemble non vide. Une distance (ou métrique) sur E est une

fonction d : E � E ! R+ satisfaisant aux propriétés suivantes:

a) 8x; y 2 E, d(x; y) � 0 et d(x; y) = 0 si et seulement si x = y:
b) d(x; y) = d(y; x), (symétrique).

c) 8x; y; z 2 E, d(x; z) � d(x; y) + d(y; z), (inégalite triangulaire).

Exemple 1.1.1 D (x; y) = d(x;y)
1+d(x;y)

est une distance sur un ensemble non vide E si d est

une distance sur E car:

a)

D (x; y) = 0 (1.1.1)

2



1.1. Distances et espaces métriques

(1:1:1) () d (x; y)

1 + d (x; y)
= 0

(1:1:1) () d (x; y) = 0

(1:1:1) () x = y

D�où la condition (a).

b)

D (x; y) =
d (x; y)

1 + d (x; y)

=
d (y; x)

1 + d (y; x)

= D (y; x)

D�où la condition (b).

c) en�n, concernant l�inégalite triangulaire (c), on procède comme suit, on voit que

D (x; y) =
d (x; y)

1 + d (x; y)

= 1� 1

1 + d (x; y)

Grace à l�inégalite triangulaire véri�ée par d on peut écrire:

d (x; z) � d (x; y) + d (y; z)

d (x; z) + 1 � d (x; y) + d (y; z) + 1

1

d (x; z) + 1
� 1

d (x; y) + d (y; z) + 1

� 1

d (x; z) + 1
� � 1

d (x; y) + d (y; z) + 1

1� 1

d (x; z) + 1
� 1� 1

d (x; y) + d (y; z) + 1

d (x; z)

1 + d (x; z)
� d (x; y) + d (y; z)

1 + d (x; y) + d (y; z)

3



1.1. Distances et espaces métriques

En passant au même dénominateur, on obtient:

d (x; z)

1 + d (x; z)
� d (x; y)

1 + d (x; y) + d (y; z)
+

d (y; z)

1 + d (x; y) + d (y; z)

Donc

d (x; z)

1 + d (x; z)
� d (x; y)

1 + d (x; y)
+

d (y; z)

1 + d (y; z)

Alors

D (x; z) � D (x; y) +D (y; z)

Exemple 1.1.2 d (x; y) =
��� 1x � 1

y

��� ; x; y 2 R� est une distance sur R� car:
a)

d (x; y) = 0 (1.1.2)

(1:1:2) ()
����1x � 1y

���� = 0
(1:1:2) () 1

x
=
1

y

(1:1:2) () x = y

b)

d (x; y) =

����1x � 1y
����

=

����(�1)�1y � 1

x

�����
= j�1j

����1y � 1

x

����
=

1

y
� 1

x

4



1.1. Distances et espaces métriques

c)

d (x; z) =

����1x � 1z
����

=

����1x � 1y + 1y � 1z
����

�
����1x � 1y

����+ ����1y � 1z
����

Donc

d (x; z) � d (x; y) + d (y; z)

Exemple 1.1.3 � (x; y) = ln(1 + d (x; y)) est une distance sur un ensemble non vide E si

d est distance sur E car:

a)

� (x; y) = 0 (1.1.3)

(1:1:3) () ln(1 + d (x; y)) = 0

(1:1:3) () 1 + d (x; y) = 1

(1:1:3) () d (x; y) = 0

(1:1:3) () x = y

b)

� (x; y) = ln(1 + d (x; y))

= ln(1 + d (y; x))

= � (y; x)

c) On a d distance alors:

d (x; z) � d (x; y) + d (y; z) (1.1.4)

5



1.1. Distances et espaces métriques

(1:1:4) () 1 + d (x; z) � 1 + d (x; y) + d (y; z)

(1:1:4) () 1 + d (x; z) � 1 + d (x; y) + d (y; z) + d (x; y) d (y; z)

(1:1:4) () 1 + d (x; z) � (1 + d (x; y)) (1 + d (y; z))

(1:1:4) () ln(1 + d (x; y)) � ln (1 + d (x; y)) (1 + d (y; z))

(1:1:4) () ln(1 + d (x; y)) � ln (1 + d (x; y)) (1 + d (y; z))

(1:1:4) () ln(1 + d (x; y)) � ln (1 + d (x; y)) + ln (1 + d (y; z))

Donc

� (x; z) � � (x; y) + � (y; z)

1.1.2 Distances équivalentes

Dé�nition 1.1.2 On dit que deux distances d1, d2 sur un ensemble E sont équivalentes s�il

existe deux constantes réelles � � � � 0 telles que:

�:d1(x; y) � d2(x; y) � �:d1(x; y)

pour tous x; y 2 E:

Exemple 1.1.4 Soit (di)1�i�p une famille �nie de p distances sur Ei. On pose E =
pY
i=1

Ei;

et on dé�nit sur le produit cartésien E � E deux distances comme suit:

Pour tout x = (x1; x2; :::; xn), y = (y1; y2; :::; yn) de E on pose:

D1(x; y) = sup
1�i�p

di(xi; yi)

D2(x; y) =

pX
i=1

di(xi; yi)

6



1.1. Distances et espaces métriques

On a

sup
1�i�p

di(xi; yi) �
pX
i=1

di(xi; yi) � p sup
1�i�p

di(xi; yi)

D1(x; y) � D2(x; y) � pD1(x; y)

Alors D1 et D2 sont équivalents telle que � = 1; � = p

1.1.3 Espaces métriques

Dé�nition 1.1.3 On appelle espace métrique tout ensemble non vide E muni d�une dis-

tance. Un tel espace sera noté dans la suite (E; d).

Exemple 1.1.5 L�ensemble des nombres réels R muni de la distance usuelle

d(x; y) = jx� yj x; y 2 E

est un espace métrique.

Exemple 1.1.6 Sur l�espace Rn, on peut dé�ni plusieurs distances, on faisan intervenir

les distances entre les composantes. Soint x = (x1; ::; xn) et y = (y1; ::; yn) 2 E. On dé�nit

deux distances, à savoir:

d1(x; y) =

�
max
i=1;::;n

jxi � yij
�

et

d1(x; y) =
X
i=1;::;n

jxi � yij

La troisième est celle qu�on appelle la distance euclidienne

d2(x; y) =

s X
i=1;::;n

jxi � yij2:

Exemple 1.1.7 (Distance produit). Soient (X; dX) et (Y; dY ) deux espaces métriques,

on peut dé�nir une distance sur l�espace produit X � Y par:

d[(x1;y1); (x2; y2)] = sup fdX(x1; x2); dY (y1; y2)g :

7



1.2. Normes et espaces vectoriels normés

1.2 Normes et espaces vectoriels normés

1.2.1 Normes

Dé�nition 1.2.1 Une norme sur un espace vectoriel E est une fonction continue de E

dans R+ noté par:

x! kxk

véri�ant les propriétés suivantes:

a) 8x 2 E, kxk � 0 et (kxk = 0) () (x = 0) ; (séparation) :

b) 8� 2 R, x 2 E, k�xk = j�j : kxk, où j�j désigne respectivement la valeur absolue si
| = R ou module si | = C; (homogènété) :

c) 8x; y 2 E, kx+ yk � kxk+ kyk ; (inéaglité du triangle) :

Exemple 1.2.1

k(x; y)k = sup
t2[0;1]

jx+ tyjp
1 + t2

est une norme sur R2 car:

a)

8 (x; y) 2 R2;8t 2 [0; 1]

k(x; y)k � 0 () sup
t2[0;1]

jx+ tyjp
1 + t2

� 0 car: jx� tyj � 0 et
p
1 + t2 � 0

8 (x; y) 2 R2;8t 2 [0; 1] ; k(x; y)k = 0 (1.2.1)

(1:2:1) () sup
t2[0;1]

jx+ tyjp
1 + t2

= 0

(1:2:1) () jx+ tyj = 0

(1:2:1) () x+ ty = 0

(1:2:1) () x = 0 ^ y = 0

8



1.2. Normes et espaces vectoriels normés

b)

8 (x; y) 2 R2; t 2 [0; 1]

k� (x; y)k = k(�x; �y)k

= sup
t2[0;1]

j�x+ �tyjp
1 + t2

= sup
t2[0;1]

j�j jx+ tyjp
1 + t2

= j�j sup
t2[0;1]

jx+ tyjp
1 + t2

= j�j k(x; y)k

c)

8 (x1; y1) ; (x2; y2) 2 R2 ;8t 2 [0; 1]

k(x1; y1) + (x2; y2)k = k(x1 + x2); (y1 + y2)k

= sup
t2[0;1]

j(x1 + x2) + t (y1 + y2)jp
1 + t2

= sup
t2[0;1]

jx1 + x2 + ty1 + ty2jp
1 + t2

� sup
t2[0;1]

�
jx1 + ty1jp
1 + t2

+
jx2 + ty2jp
1 + t2

�
= sup

t2[0;1]

jx1 + ty1jp
1 + t2

+ sup
jx2 + ty2jp
1 + t2

donc

k(x1; y1) + (x2; y2)k � k(x1; y1)k+ k(x2; y2)k

Exemple 1.2.2

8x 2 Rn; 1 � p <1 kxkp =
 X

jxijp
i=1;::;n

! 1
p

Cette formule dé�nit une norme sur Rn.

1.2.2 Normes équivalentes

Dé�nition 1.2.2 On dit que deux normes kxk1 ; kxk2 sur un ensemble E sont équivalentes
s�il existe deux constantes réelles � � � � 0 telles que

� kxk1 � kxk2 � � kxk1

9



1.2. Normes et espaces vectoriels normés

pour tous x; y 2 E :

1.2.3 Espaces vectoriels normés

Dé�nition 1.2.3 On appelle espace vectoriel normé (E; k:k) tout espace vectoriel E sur

le corps | = R ou C muni d�une norme.

Proposition 1.2.1 [10] Si (E; k:k) est un espace vectoriel normé, on dé�nit la distance

associée à une norme par:

dk:k(x; y) = kx� yk

On véri�e sans peine que les propriétés de (a) à (c) de la dé�nition de distance sont satis-

faites.

1.2.4 Norme matricielle

Dé�nition 1.2.4 soit k:k une norme vectorielle sur E = Rn.
On appelle une matricielle induite, par cette norme vectorielle, sur MN(R); qu�on note

encore par

k:k : A! kAk = sup fkAxk ; x 2 Rn; kxk = 1g

kAk1 = sup
kxk1=1

kAxk1
kxk1

= max
1�j�N

NX
i=1

jaijj

kAk2 =

NX
i=1

NX
j=1

jaijj2

kAk1 = sup
kxk1=1

kAxk1
kxk1

= max
1�j�N

NX
i=1

jaijj

Proposition 1.2.2 [2] Soit A 2MN(R)

kAk2 () �(A)

�(A) : Le rayon spectral d�une matrice A:

10



1.3. Suites de Cauchy et espaces complets

Exemple 1.2.3 Dans Rn on peut dé�nir plusieurs normes:

La norme euclidienne:

kxk =
sX

x2i
i=1;::;n

Que l�on note aussi kxk2
kxk1 = sup

i=1;::;n
fjxijg

kxk1 =
X
i=1;::;n

jxij

Exemple 1.2.4 L�espace vectoriel C([0; 1];R) peut être muni des normes:

kfk1 = sup
t2[0;1]

fjf(t)jg , (La norme de convergence uniforme).

kfk1 =
Z 1

0

jf(t)j dt

kfk2 =

sZ 1

0

[f(t)]2dt

Exemple 1.2.5 (Norme produit). Si (E; k:kE) et (F; k:kF ) sont des espaces normés, on
peut dé�nir une norme sur l�espace vectoriel E � F par:

(x; y) 2 E � F; k(x; y)k = supfkxkE ; kykFg

1.3 Suites de Cauchy et espaces complets

1.3.1 Suites de Cauchy

Dé�nition 1.3.1 On dit que la suite fxngn2N dans l�espace métrique (E; d) est de Cauchy
si

8" > 0;9N" 2 Nn8n;m 2 N : n > m � N" =) d(xn; xm) < "

On écrit alors:

d(xn; xm)! 0
n;m!1

11



1.3. Suites de Cauchy et espaces complets

Exemple 1.3.1 (Un) = e�n est une suite de Cauchy car pour tout couple d�entiers naturels

(n;m) tels que n > m:

jUn � Umj =
��e�n � e�m�� = e�m � e�n < e�m

soit " un réel strictement positif. Si " 2 [1;+1[, l�inégalité e�m � " est vraie quel que soit
l�entier m. Si " 2 ]0; 1[ ; cette même inégalité est vraie pour tout m � � log ": Ainsi, il
su¢ t de prendre N" = [� log "] + 1:

Exemple 1.3.2 On munit l�ensemble C ([0; 1] ;R) de la distance fondamentale d1 et con-

sidère les suites (fn)n 2 N dé�nies par: fn (x) = min
�
n; 1p

x

�
fn (x) = min

�
n;

1p
x

�
=

8<: n si 0 � x � 1
n2
;

1p
x
si 1

n2
� x � 1;

Soit " > 0. Pour tout n et m de N�, avec n > m, on écrit:

d1 (fn; fm) =

Z 1

0

jfn(x)� fm(x)j dx

=

Z 1
n2

0

(n�m) dx+
Z 1

m2

1
n2

�
1p
x
�m

�
dx+

Z 1

1
m2

�
1p
x
� 1p

x

�
dx

=

�
1

n
� m

n2

�
+ 2

�
1

m
� 1

n

�
�m

�
1

m2
� 1

n2

�
=

1

m
� 1

n

<
1

m
:

Il en résulte qu�il su¢ t de prendre N" =
�
1
"

�
+ 1 dans le critère de Cauchy.

Proposition 1.3.1 [10] Toute suite convergente d�un espace métrique (E; d) est de Cauchy:

Preuve. si lim
n!1

(xn) = a, cela veut dire que:

8" > 0;9N" tel que 8n � N" =) d(xn; a) < "

Et donc

8n;m � N "
2
=) d(xn; xm) � d(xn; a) + d(a; xm) <

"

2
+
"

2
= ":
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1.3. Suites de Cauchy et espaces complets

Exemple 1.3.3 Par contre il y a des suites de Cauchy qui ne convergent pas:

dans l�espace ]�1;+1[ la suite
�
1� 1

n

	
n2N� est une suite de Cauchy, puisque la méme

suite converge dans R vers 1, mais 1 =2 ]�1;+1[

1.3.2 Espaces complets

Dé�nition 1.3.2 Un espace métrique (E; d) est dit complet si toute suite de Cauchy dans

E converge (dans E):

Exemple 1.3.4 l�espace E = C ([a; b] ;R), muni de la distance fondamentale d1 est com-

plet. Soit (fn)n2N une suite de Cauchy de E. On a:

8" > 0 9N" 2 N = 8n;m 2 N : n > m � N" =) d1 (fn; fm) � "

autrement dit:

8" > 09N" 2 N=8n;m 2 N : n > m > N" ) sup
a�x�b

jfn (x)� fm (x)j � " (1.3.1)

Il en résulte que pour tout x de [a; b], la suite (fn (x))n2N est de Cauchy dans l�espace

complet (R; j:j). Elle est donc convergente. Soit f (x) sa limite. Il nous su¢ t à présent de
s�assurer que:

a) f est un élément de E:

b) lim
n!1

fn = f (relativement à d1).

Pour le premier point, il su¢ t de montre que f est continue sur [a; b]. Considérons pour

cela un point x0 de E. Il vient:

jf(x)� f(x0)j = jf(x)� fn(x) + fn(x)� fn(x0) + fn(x0)� f(x0)j

� jf(x)� fn(x)j
(I)

+ jfn(x)� fn(x0)j
(II)

+ jfn(x0)� f(x0)j
(III)

Estimons les trois quantités (I), (II) et (III). Soit " > 0, pour (I) et (III) on remarque

que:

9N" 2 Nn n � N" =) (I) � "

3

9N 0

" 2 Nn n � N
0

" =) (III) � "

3

13



1.3. Suites de Cauchy et espaces complets

Grâce à la convergence de la suite (fn (x))n2N. D�autre part, il existe un réel � > 0 tel que:

jx� x0j � � =) (II) � "

3

En prenant N
00
" = max

�
N"; N

0
"

�
on obtient:

jx� x0j � � =) jf(x)� f(x0)j � ".

Donc f est continue en x0, par suite, sur [a; b].

La seconde condition se démontre comme ceci:

Pour p � N" et x dans [a; b], tous deux �xés quelconques, on peut passer à la limites dans
la relation (1:3:1) quand q tend vers +1. En vertu de la continuité de la valeur absolue
on obtient:

8p � N"; 8x 2 [a; b] : jfp(x)� f(x)j � ":

Donc

p � N" =) sup
a�x�b

jfp(x)� f(x)j � ":

C�est-à-dire

lim
n!+1

fn = f

Exemple 1.3.5 Soient (Ei; di) i = 1; ::; n des espaces complets. Alors E =
Y

i=1;:::;n

Ei

muni de la distance produit d1 = (d1; ::; dn) est un espace complet. En particulier, l�espace

produit Rn l�est aussi pour la norme produit.

Exemple 1.3.6 L�espace C ([0; 1] ;R) muni de la norme k:k1 n�est pas complet. Pour le
voir, il su¢ t de remarquer que la suite des fonctions continues

fn(t) =

8<: 2ntn si t 2
�
0; 1

2

�
1 si t 2

�
1
2
; 1
�

est de Cauchy car:

kfn � fmk =

Z 1

0

jfn(t)� fm(t)j dt

=
1

2

���� 1

n+ 1
� 1

m+ 1

����
Si (fn)n2N convergeait, sa limite f(t) devrait être nulle dans l�intervalle

�
0; 1

2

�
et égale

à 1 dans l�intervalle
�
1
2
; 1
�
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1.4. Espace de Banach

1.4 Espace de Banach

Dé�nition 1.4.1 Un espace de Banach est un espase vectoriel normé complet. Sur le corps

| des réels ou des complexes (R et C), avec leur normes usuelles de Banach.

Exemple 1.4.1 l�espace Rn est un espace de Banach pour la norme euclidienne.

Proposition 1.4.1 [7] Tout espace vectoriel normé de dimension �nie est un espace de

Banach.

1.5 Les contractions

1.5.1 Continuité

Dé�nition 1.5.1 Soit deux espaces métriques (E; dE) et (F; dF ) et f une application de

E dans F: Soit a un point de E:

On dira que ( f est continue en a ) si:

8" > 0; 9� > 0n 8x 2 E; dE(x; a) < � =) dF (f(x); f(a)) < "

Si l�application f est continue en tout point a de E, on dit qu�elle est « continue sur E » ,

ou plus simplement ( continue ).

1.5.2 La continuité uniforme

Dé�nition 1.5.2 On dit que f est uniformément continue sur E si et seulement si:

8" > 0; 9� > 0n 8x; x0 2 E; dE(x; x
0
) < � =) dF (f(x); f(x

0
)) < "

� (") ne depend pas de x; x0:
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1.5. Les contractions

1.5.3 Application Lipschitzienne

Dé�nition 1.5.3 On dit qu�une application f : (E; dE) ! (F; dF ) est de Lipschitz (ou

Lipschitzienne) de rapport K > 0 (ou k � Lipschitzienne) si elle satisfait:

8x; y 2 E dF (f (x) ; f (y)) � KdE (x; y) :

Exemple 1.5.1 Soit E � (R+; j:j) et la fonction f dé�nit par f(x) = x
1+x

est Lipschitzienne

car:

8 (x; y) 2 R+;

jf(x)� f(y)j =
���� x

1 + x
� y

1 + y

����
=

����x (1 + y)� y (1 + x)(1 + x) (1 + y)

����
=

����x+ xy � y � yx(1 + x) (1 + y)

����
=

jx� yj
(1 + y) (1 + x)

� jx� yj

Donc f est 1� Lipschitzienne sur R+ donc elle l�est aussi sur R (puisque f impaire).

Corollaire 1.5.1 [10] Soit f dérivable sur un intervalle I.

Alors:

(f est Lipschitzienne sur I) ()
�
f

0
est bornée sur I

�
:

Preuve.

( =) ) Supposons f Lipschitzienne sur I :

9k 2 R�+;8(x; y) 2 I2 jf(x)� f(y)j � k jx� yj

�k � f(x)� f(y)
jx� yj � k

On déduit, par passage à la limite lorsque y tend vers x

�k � f
0
(x) � k

16



1.5. Les contractions

Ceci, quelque soit x 2 I. Donc f
0
est bornée sur I.

((= ) Supposons f 0
est bornée sur I :

9M 2 R�+; t 2 I;
���f 0
(t)
��� �M

D�aprés l�inégalité des acroissements �nis appliquée à f sur le segment [x; y]

jf(y)� f(x)j �M jy � xj

Donc f est M � Lipschitzienne:

Evidemment, par contraposition on a pour f dérivable sur un intervalle I

(f est non Lipschitzienne sur I) ()
�
f

0
n�est pas bornée sur I

�
:

1.5.4 Applications contractantes

Dé�nition 1.5.4 On dit qu�une applications f est contractante si f K�Lipschitzienne
telles que 0 < K < 1:

Exemple 1.5.2 Soit E =
��
2
3
;+1

�
; j:j
�
; et f une fonction dé�nit de E dans R par

f(x) = 2x+6
3x+2

est contractante par ce que

8x; y 2 E

jf(x)� f(y)j =
����2x+ 63x+ 2

� 2y + 6
3y + 2

����
=

���� 14(y � x)
(3x+ 2) (3y + 2)

����
� 14

16
jx� yj

=
7

8
jx� yj

Donc k = 7
8
:

17



1.5. Les contractions

Exemple 1.5.3 L�application x !
p
x est uniformément continue sur R+; mais non Lip-

schitzienne.

Remarque 1.5.1 Finissant cette paragraghe par les implications suivantes:

(f contractante) =) (f Lipschitzienne) =) (f uniformément continue) =) (f con-

tinue).

18



Chapitre 2

Théorème du point �xe de Banach

Dans ce chapitre nous présentons le théorème du point �xe dans un espace métrique complet

et sa version dans un espace de Banach, avec des remarques sur le théorème et la signi�cation,

aussi quelques extensions du principe de l�application contracante.

2.1 Point �xe

Dé�nition 2.1.1 On dit que a point �xe pour une application f si:

f(a) = a

Exemple 2.1.1 Soit f une fonction dé�nie de R dans R par:

f(x) =
2x+ 6

3x+ 2

On cherche les points �xes de f

f(x) = x (2.1.1)

(2:1:1) () 2x+ 6

3x+ 2
= x

(2:1:1) () 3x2 = 6

(2:1:1) () x2 = 2

(2:1:1) () x = �
p
2

Alors f admet deux points �xes dans R:
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2.2. Théorème du point �xe de Banach dans un espace métrique complet

Exemple 2.1.2 Soit g une fonction dé�nie de R dans R par:

g(x) = 1 + 2x

On chercher les points �xes de g

g(x) = x (2.1.2)

(2:1:2) () 1 + 2x = x

(2:1:2) () x = �1

Alors g admet un seul point �xe dans R:

Exemple 2.1.3 Soit h une fonction dé�nie de R dans R par:

h(x) = x+
�

2
� arctanx

On cherche les points �xes de h

h(x) = x (2.1.3)

(2:1:3) () x+
�

2
� arctanx = x

(2:1:3) () �

2
� arctanx = 0

(2:1:3) () arctanx =
�

2

Ce qui est impossible car la fonction tan n�est pas dé�nit à �
2
. Alors h n�a pas de point

�xe dans R:

2.2 Théorème du point �xe de Banach dans un espace

métrique complet

Théorème 2.2.1 [8] Soit (E; d) espace métrique complet, toute contraction d�un espace

métrique complet E non vide dans lui-même admet un point �xe et un seul :

Démonstration.

a) L�existence:
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2.2. Théorème du point �xe de Banach dans un espace métrique complet

On va utiliser la méthode dite des approximations successive.

Soit x0 un point quelconque de E, posons:

x1 = f(x0); x2 = f(x1) = f
2(x0); :::; xn = f(xn�1) = f

n(x0); :::

Nons formons ainsi une suite in�nie x0; x1;x2; :::; xn; :::::::: d�éléments de E. Nons allons

montrer que (xn)n2N est une suite de Cauchy. Comme f est une contraction, on a la suite

des inégalités :

d(x2; x1) = d(f(x1); f(x0))

� kd(x1; x0)

d(x3; x2) = d(f(x2); f(x1))

� kd(x2; x1)

� k2d(x1; x0)

: : :

: : :

: : :

(xn+1; xn) = d(f(xn); f(xn�1))

� kd(xn; xn�1)

� knd(x1; x0)

d(xn+p; xn) � d(xn+p; xn+p�1) + d(xn+p�1; xn+p�2) + :::+ (xn+1; xn)

� (kp�1 + kp�2 + :::+ k + 1)knd(x1; x0)

(kp + kp�1 + :::+ k + 1) somme de (p+ 1) terme d�une suite géometrique.

Alors

d(xn+p; xn) �
kn

1� kd(x1; x0)

On en déduit bien que d(xn+p; xn) tend vers 0 quand n tend vers +1; donc la suite des
(xn)n2N est une suite de Cauchy par suite, elle admet une limite a, alors xn tend vers a on

voit que xn+1 = f(xn) tend vers f(a) d�aprés la contituité de f , et comme xn+1 tend aussi

vers a, on a bien a = f(a); et a est un point �xe.
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2.3. La version dans un espace de Banach

b) L�unicité:

L�unicité du point �xe est évidente, même si E n�est pas complet.

Si a et b sont deux points �xes, on doit avoir

f(a) = a; f(b) = b

d(a; b) = d(f(a); f(b))

f contraction

d(a; b) � kd(a; b) < d(a; b) si d(a; b) 6= 0:

On a donc nécessairement d(a; b) = 0; a et b sont confondus (a = b) :

2.3 La version dans un espace de Banach

Théorème 2.3.1 [6] Si f est une application contractante d�un espace de Banach E dans

lui-même, alors f possède un point �xe unique a 2 E; qui est par défnition la solution
unique de l�équation

f(x) = x

de plus la suite fxngn2N , dite des approximations successives, dé�nit par:8<: x0 donné dans E

xn+1 = f(xn)

converge vers a:

Démonstration. On va suivre la même démarche que la démonstration précédente:

a) Existence d�une solution:

La suite fxngn2N est une suite de Cauchy. En e¤et posons p entier positif:

kxn+p � xnk = kf(xn+p�1)� f(xn�1)k

� k kxn+p�1 � xn�1k

Par récurrence on obtient:

kxn+p � xnk � kn kxp � x0k
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2.4. Remarques

D�autre part

kxp � x0k � kxp � xp�1k+ kxp � xp�2k+ :::+ kx1 � x0k

Soit

kxp � x0k � (kp + kp�1 + :::+ k + 1) kx1 � x0k

(kp + kp�1 + :::+ k + 1) somme de (p+ 1) terme d�une suite géometrique, alors

kxp � x0k �
1� kp+1
1� k kx1 � x0k

On utilise l�hypothèse de contraction k < 1 et on obtient:

kxp � x0k �
1

1� k kx1 � x0k

d�où

kxn+p � xnk �
kn

1� k kx1 � x0k

Donc la suite fxngn2N est une suite de Cauchy qui converge vers une limite a dans l�espace
complet E. Cette limite véri�e

f(a) = a

b) Unicité de la solution:

Supposons l�existence de deux solutions a1 et a2; l�hypothèse de contraction entraîne:

ka1 � a2k = kf(a1)� f(a2)k

� k ka1 � a2k

< ka1 � a2k ; car k < 1

donc contradiction et a1 = a:

2.4 Remarques

Remarque 2.4.1 Le procédé précédent donne non seulement l�existence du point �xe, mais

une méthode pratique pour le trouver. En outre la suite des fxng
n2N

est rapidement conver-

gente. On a en e¤et:

kxn; ak = lim
p!+1

kxn; xn+pk �
kn

1� kn kx1; x0k :
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2.4. Remarques

Remarque 2.4.2 Si f est une application Lipschitiziene (pas nécessairement une contrac-

tion) mais l�une de ces itérées fP est une contraction, alors f a encore un point �xe et un

seul. Ceci résulte de l�unicité.

Corollaire 2.4.1 [8] Une application d�un espace métrique complet dans lui-même dont une

itérée est contractante possède un point �xe unique.

Preuve. Soit (E; d) un espace métrique complet, et f : E ! E une application. On

suppose qu�une itérée de f est contractante, c�est-à-dire qu�il existe un entier p � 1telque

fP = f � f � f � ::: � f| {z }
p fois

(p facteurs) soit Lipschitzienne de rapport k < 1. D�après l�hypothése précédent, fP

possède un point �xe unique x. On a

f P (f(x)) = f P+1 (x) = f(f P (x)) = f(x)

donc f(x) est un point �xe de ffngn2N. Mais comme x est l�unique point �xe de fP , on a
f(x) = x, ce qui exprime que x est un point �xe def .

Supposons que y soit un autre point �xe de f . On voit immédiatement que y est aussi un

point �xe de f . Donc en raison de l�unicité du point �xe de fP ; x = y:

Corollaire 2.4.2 [13] Soit (E; d) un espace métrique complet et soit

B(x0; r) = fx 2 E; d (x0; x) < rg

ou x0 2 E et r > 0:

Supposons que f : B(x0; r)! E est une contraction avec:

d (f (x0) ; x0) � (1� k) r:

alors f admet un seul point �xe dans B(x0; r)

Preuve. Il existe r0 avec 0 � r0 � r tel que d (f (x0) ; x0) � (1� k) r0.
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2.4. Remarques

Nous montrerons que f : B(x0; r0)! B(x0; r0): En e¤et si x 2 B(x0; r0); alors

d (f (x) ; x0) � d (f (x) ; f (x0)) + d (f (x0) ; x0)

� kd(x; x0) + (1� k) r0

� r0

Nous pouvons appliquer le théorème du point �xe dans l�espace métrique pour déduire que

f a un seul point dans B(x0; r0) � B(x0; r): Encore, on peut montrer que f a un seul point

dans B(x0; r)

Remarque 2.4.3 On peut remplacer la condition de contraction de f par la condition

suivante:

sup
���f 0

(x)
��� � k, k < 1

On a:

Corollaire 2.4.3 [14] Soit f : ]a; b[ ! R une fonction dérivable sur ]a; b[. Alors f une

contraction si seulement si:

sup
a<x<b

���f 0
(x)
��� � 1

Preuve. Supposons que sup
a<x<b

��f 0
(x)
�� = k � 1, soient x; y 2 ]a; b[. D�après le théorème

des accroissements �nis: f(x)� f(y) = (x� y) f 0
(�) avec � 2 ]y; x[ ; d�ou:

jf(x)� f(y)j = jx� yj
���f 0

(�)
���

� k jx� yj

D�où f est contractante

Réciproque: f est contractante

8x 2 ]a; b[ ; 8� tel que x+ � 2 ]a; b[ : jf(x+ �)� f(x)j � k j�j

et pour � 6= 0����f(x+ �)� f(x)�

���� < k =) lim
�!0

����f(x+ �)� f(x)�

���� = ���f 0
(x)
��� � k

d�où l�équivalence.

25



2.5. La signi�cation du théorème du point �xe de Banach

2.5 La signi�cation du théorème du point �xe de Ba-

nach

L�application de ce théorème nous donne des résultats qui sont d�une importance fondamen-

tale dans l�analyse non linéaire

Citons quelques un

- Existance de la solution.

- Unicité de la solution.

- Stabilité de la solution sous une petite perturbation de l�équation.

- Existance de la convergence des méthodes d�approximation.

- Stabilité des méthodes d�approximation.

Et pour achever ce paragraphe, nous allons montrer que les hypothèses du théorème du

point �xe de Banach sont essentielles:

Si nous en négligeons seulement une, alors le point �xe n�existe pas.

1) E n�est pas stable par f :

f(x) =
p
x2 + 1 sur E = [0; 1]

or E est fermé dans R, et complet car R est complet. De plus:

f(x) =
xp
x2 + 1

< 1) (sup
x2E

���f 0
(x)
��� < 1)) (f est contractante)

mais f n�a pas du point �xe car:

f ([0; 1]) =
h
1;
p
2
i
, i.e. E n�est pas stable par f

2) considérons l�espace suivant : E = fx 2 R : x � 1g muni de la métrique

d (x; y) = jx� yj ; 8x; y 2 E
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2.6. Extension du principe d�application contractante

soit f : E ! E tel que :f (x) = x+ 1
x
alors:

d (f (x) ; f (y)) = jf (x)� f (y)j

=

����x+ 1x � y � 1y
����

=

����x� y � 1y + 1x
����

=

����x� y � x� yxy

����
=

����x� y(1� 1

xy
)

����
= jx� yj xy � 1

xy

< jx� yj

= d (x; y)

donc

d (f (x) ; f (y)) < d (x; y) 8x; y 2 E

c�est-à-dire:

@k < 1 tel que : d (f (x) ; f (y)) < kd (x; y) 8x; y 2 E

on véri�e que f ne possède aucun point �xe dans E

En e¤et: f (x) = x) 1
x
= 0 impossible.

3) E n�est pas complet

fx =
sin x

2
sur E =

i
0;
�

4

i

or f
�i
0;
�

4

i�
=

#
0;

p
2

4

#
�
i
0;
�

4

i
, et sup

x2E
jf 0 (x)j = 1

2
< 1

Donc f est contractante mais E n�est pas fermé dans R donc il n�est pas complet:

2.6 Extension du principe d�application contractante

Le principe du point �xe a connu de diverses extensions. Dans ce qui suit nous allons

aborder quelques extension
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2.6. Extension du principe d�application contractante

2.6.1 Extension de Boyd et Wong

Elle consiste à remplacer la contraction par la ' � contraction dont nous donnons la dé�-
nition:

Dé�nition 2.6.1 soit E un espace métrique et f une application de E dans E. On dit que

f est une '� contraction, s�il existe une application ' semi-continue supérieurement de

[0;1[ dans [0;1[avec ' (r) < r pour r > 0 telle que:

8x; y 2 E, d (f (x) ; f (y)) < ' (d (x; y))

Le résultat suivant va assurer l�existance d�un unique point �xe pour une telle applica-

tion.

Théorème 2.6.1 [14] Toute '� contraction d�un espace métrique complet dans lui-même
admet un point �xe unique.

Remarque 2.6.1 La contraction est un cas particulier de la '�contraction (il su¢ t de
prendre ' (r) = kr pour tout r � 0, 0 � k < 1 ).

2.6.2 Extension d�Edeltein

Théorème 2.6.2 [14] Soit (E; d) un espace métrique complet et f : E ! F une application

telle que

d(f(x); f(y)) < d(x; y); 8x; y 2 E; x 6= y (2.6.1)

Supposons qu�il existe y 2 E, tel que les itérations de fxngn2N données par8<: xn = y

xn = f(xn); n � 1

possèdent une sous suite
�
xnj
	
avec lim

j!+1
xnj = x 2 E:

Alors x est point �xe de f et il est unique.

Remarque 2.6.2 1) L�application f : E ! F avec la propriété (2:6:1) ne donne pas

le même résultat que le théorème (2.6.1) mais si E est complet alors f avec la propriété

(2:6:1) est une '� contraction.
2) Le résultat précédent (d�Edeltein) a une importante conséquence qui est:
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2.6. Extension du principe d�application contractante

Théorème 2.6.3 [14] Soit (E; d) un espace métrique complet et f : E ! F telle que:

d(f(x); f(y)) < d(x; y); 8x; y 2 E; x 6= y

En plus, supposons que f : E ! K ou K est un sous-ensemble compact de E alors f

possède un unique point �xe dans E.
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Chapitre 3

Application du théorème du point

�xe de Banach

Dans ce chapitre, nous présentons quelques applications du théorème du point �xe de

Banach.

Ces applications incluent les théorèmes d�existence de solution pour les équations dif-

férentielles ou les équations intégrales et l�étude de la convergence de certaines méthodes

numériques comme la résolution des systèmes linéaires.

3.1 Application aux équations intégrales

3.1.1 Equations de Fredholm

On considère un réel �; une fonction numérique réelle g continue sur un intervalle fermé

[a; b], et une fonction réelle K de 2 variables réelles continue sur le pavé fermé [a; b]� [a; b].
Le problème intégral de Fredholm s�écrit:8><>:

Trouver la fonction f dé�nie sur [a; b] telleque:

f(x) = �

Z b

a

k(x; y)f(y)dy + g(x) 8x 2 [a; b]
(3.1.1)

On se place dans l�espace C([a; b]) des fonctions continues muni de la norme du max

kfk1 = sup
x2[a;b]

jf(x)j
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3.1. Application aux équations intégrales

On pose ( K est continue sur [a; b]� [a; b] ):

M = sup
(x;y)2[a;b]�[a;b]

jk(x; y)j

et on obtient aisément par application du théorème du point �xe le résultat suivant:

Théorème 3.1.1 [6] L�équation de Fredholm admet une solution unique dans C [a; b] à la

condition su¢ sante que:

j�jM(b� a) < 1

Démonstration.

1) (C([a; b]); jj:jj1) est un espace de Banach.
2) L�application T dé�nie par8><>:

f ! Tf ou:

Tf(x) = �

Z b

a

k(x; y)f(y)dy + g(x) 8x 2 [a; b]

est une application de C([a; b]) dans lui même. En e¤et:

Tf(x0 + h)� Tf(x0) = �
Z b

a

(k(x0 + h; y)� k(x0; y))f(y)dy + g(x0 + h)� g(x0)

où

jTf(x0 + h)� Tf(x0)j = j�j
Z b

a

j(k(x0 + h; y)� k(x0; y))j jf(y)j dy + jg(x0 + h)� g(x0)j

et le résultat en utilisant la continuité de K et celle de g.

3) L�application T est une contraction:

Tf1(x)� Tf2(x) = �
Z b

a

k(x; y)(f1(y)� f2(y))dy

donc comme K est bornée par M dans [a; b]� [a; b]

jTf1(x)� Tf2(x)j � j�jM(b� a) kf1 � f2k ; 8x 2 [a; b]

On obtient:

kTf1(x)� Tf2(x)k � j�jM(b� a) kf1 � f2k

Avec

k = j�jM(b� a) < 1
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3.2. Application aux équations di¤érentielles

Remarque 3.1.1 On pourrait remplacer la condition ci-dessus par la condition suivante:

sup j�j
Z b

a

jk(x; y)j dy � k < 1

3.2 Application aux équations di¤érentielles

3.2.1 Théorèmes d�existence et d�uncité du Cauchy-Lipschitz

Soit l�équation di¤érentielle

y0 = f(x; y) (3.2.1)

Dé�nition 3.2.1 (Fonction de Lipschitz) On dit que la fonction f véri�e la condition

de Lipschitz par rapport à y sur l�intervalle U si

8(x; y1); (x; y2) 2 U jf(x; y1)� f(x; y2)j � k jy1 � y2j

k : est appelé le constant de Lipschitz.

Proposition 3.2.1 [11] Si la dérivée f 0
y (dérivée par rapport à y) existe et veri�e:��f 0

y (x; y)
�� �M; M réel positif.

Alors f est satisfait la condition de Lipschitz.

Preuve. On a

8x; y jf 0(x; y)j �M

En appliquant le théorème des accroisements �nis pour les deux point (x; y1) on trouve

f(x; y1)� f(x; y2) = f 0
y (x; �)(y1 � y2) y1 � � � y2

jf(x; y1)� f(x; y2)j =
��f 0
y (x; �)

�� jy1 � y2j
� M jy1 � y2j

Donc f veri�e la condition de Lipshitz avec k =M :
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3.2. Application aux équations di¤érentielles

Proposition 3.2.2 [11] Soit l�équation di¤érentielle (3:2:1) avec la condition initiale y(x0) =

y0 dite le problème de Cauchy8<: y0(x) = f(x; y(x))

y(x0) = y0
où f est une fonction continue (3.2.2)

le problème (3:2:2) est équivalent à l�équation intégrale

y(x) = y0 +

Z x

x0

f(t; y(t))dt (3.2.3)

Preuve.

( =) ) Supposons maintenant que y est une solution du problème de Cauchy (3:2:2). On

a alors y0(x) = f(x; y(x)) et y(x0) = y0. On peut intégrer y0 par rapport à t car y0(t) =

f(t; y(t)) et t ! f(t; y(t)) est continue sur un segment et donc intégrable sur le même

segment. Alors on obtientZ x

x0

y0(t)dt =

Z x

x0

f(t; y(t))dt = [y(t)]xx0 = y(x)� y(x0) = y(x)� y0

donc, on a bien

y(x) = y0 +

Z x

x0

f(t; y(t))dt

((= ) Par dérivation de l�équation intégrale on obtient

y0(x) =

�Z x

x0

f(t; y(t))dt

�0
x

= f(x; y(x))

L�équation intégrale satisfait aussi la condition initiale

y(x0) = y0 +

Z x

x0

f(t; y(t))dt = y0 car:
Z x

x0

f(t; y(t))dt = 0:

Lemme 3.2.1 [11] Toute solution du problème de Cauchy (3:2:2) est une solution de l�équation

intégrale (3:2:3):

Théorème 3.2.1 [11] Soit U un domaine dé�ni comme suit

U =
�
(x; y) 2 R2 telle que jx� x0j < a; jy � y0j < b
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3.2. Application aux équations di¤érentielles

où (x0; y0) est un point �xe de R2; si la fonction f (x; y) est continue et véri�e la condition

de Lipschitz par rapport à y on a:

jf(x; y)� f(x0; y0)j � k jy � y0j

k: appelé le constant de Lipschitz. Alors l�équation di¤érentielle admet une seule solution

y = '(x) sur l�intervalle [x0 � h; x0 + h] ou h = min fjx0 � aj ; jy0 � bjg véri�ant la condi-
tion initiale y(x0) = y0:

Corollaire 3.2.1 [11] On utilise la méthode des approximations successives. On a8<: y0(x) = f(x; y(x))

y(x0) = y0
() y(x) = y0 +

Z x

x0

f(t; y(t))dt (3.2.4)

On cherche a trouver la solution approchée de l�équation (3:2:4) : Nous prenons l�approximation

de degré 0 de la fonction y; '0(x) = y0 si x 2 [x0 � h; x0 + h] : Cela signi�e que y0 +R x
x0
f(t; '0(t))dt est bien dé�nie en fonction de x: On dé�nie, '1 par

'1(x) = y0 +

Z x

x0

f(t; '0(t))dt

telle que '1(x) est continue sur l�intervalle [x0 � h; x0 + h] et véri�e '1(x0) = y0: Dé�nissons
par récurrence

'n(x) = y0 +

Z x

x0

f(t; 'n�1(t))dt (3.2.5)

Corollaire 3.2.2 [11] Cette dernière relation représente une suite des fonctions f'n(x)gn2N
continues sur l�intervalle [x0 � h; x0 + h] véri�ant la condition initial 'n(x) = y0.
Alors il faut montrer que:

1) La suite 'n(x) converge uniformément vers la solution exacte.

2) La limite de la suite, 'n(x) est une solution de l�équation intégrale (3:2:3).

3) La solution est unique (la limite de la suite 'n(x) unique).

Preuve.

1) Pour montrer la convergence uniforme, on construie la suite

Sn = '0 + ('1 � '0) + ('2 � '1) + ('3 � '2) + :::+ ('n � 'n�1)
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3.2. Application aux équations di¤érentielles

On a:

Sn = '0 +
X

i=1;:::;n

('i � 'i�1)

Sn = 'n(x); 8x 2 [x0 � h; x0 + h]

Cela signi�e que la série et la suite convergent vers la même limite.

Comme

j'1(x)� '0(x)j = jy1(x)� y0j

=

����y0 + Z x

x0

f(t; '0(t))dt� y0
����

� M

Z x

x0

dt

� M jx� x0j

Alors, en appliquant la condition de Lipschitz, on a:

j'2(x)� '1(x)j =
����y0 + Z x

x0

f(t; '1(t))dt� y0 �
Z x

x0

f(t; '0(t))dt

����
=

����Z x

x0

[f(t; '1(t))� f(t; '0(t))] dt
����

� k

Z x

x0

j'1(t)� '0(t)j dt

� kM

Z x

x0

jt� t0j dt

� 1

2
kM jx� x0j2

� kM
jx� x0j2

2!
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3.2. Application aux équations di¤érentielles

j'3(x)� '2(x)j =
����y0 + Z x

x0

f(t; '2(t))dt� y0 �
Z x

x0

f(t; '1(t))dt

����
=

����Z x

x0

[f(t; '2(t))� f(t; '1(t))] dt
����

� k

Z x

x0

j'2(t)� '1(t)j dt

� k

Z x

x0

kM
jt� t0j2

2!
dt

� k2M

2!

Z x

x0

jt� t0j2 dt

� k2M

2!

"
jt� t0j3

3

#x
x0

� k2M
jx� x0j3

3!

comme jx� x0j < h; d�où j'2(x)� '1(x)j � 1
2!
kMh2 et j'3(x)� '2(x)j � 1

3!
k2Mh3; par

réccurence on obtient: ��'n(x)� 'n�1(x)�� � Mkn�1hn

n!

Alors

Sn = '0 + ('1 � '0) + ('2 � '1) + ('3 � '2) + :::+ ('n � 'n�1)

� '0 +Mh+
1

2!
kMh2 +

1

3!
k2Mh3 + :::+

1

n!
kn�1Mhn

� y0 +
M

k
(kh) +

M

k

(kh)2

2!
+
M

k

(kh)3

3!
+ :::+

M

k

(kh)n

n!

� y0 +
M

k

�
(kh) +

(kh)2

2!
+
(kh)3

3!
+ :::+

(kh)n

n!
+ 1� 1

�
Converge vers y0 + M

k
[exp(kh)� 1] quand n tend vers +1:

Donc la série est uniformément convergente, alors la suite 'n(x) est uniformément con-

vergente sur l�intervalle [x0 � h; x0 + h]. Comme 'n(x) est une suite des fonctions continues.
Donc, la limite est une fonction continue sur l�intervalle [x0 � h; x0 + h] :
2) Montrons que 'n(x) est la solution de l�équation intégrale (3:2:3). Comme la fonction

f(x; y) est continue sur U . Alors, f(x; 'n(x)) converge vers f(x; '(x)) quand n tend vers
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3.2. Application aux équations di¤érentielles

+1. Par passage à la limite pour les deux nombres de l�équation (3:2:5). On trouve:

'(x) = y0 +

Z x

x0

f(t; '(t))dt (3.2.6)

Alors '(x) est une solution de l�équation intégrale (3:2:6), donc une solution du problème

de Cauchy(3:2:2).

Comme j'n(x)� y0j < b, 8n = 0; 1; 2; :::. Alors j'(x)� y0j < b . Donc, la fonction '(x)
est solution de l�équation di¤érentielle y0 = f(x; y); reste dans le domaine U et réalise la

condition suivante

y(x0) = y0; (y = '(x; x0; y0))

3) L�unicité de la limite

Soit '�(x) une autre solution de l�équation intégrale (3:2:3) ; y = '�(x; x0; y0) sur

l�intervalle [x0 � h�; x0 + h�] telle que h� < h; '�(x) = y0 +
R x
x0
f(t; '�(t))dt . On a:

j'n(x)� '�(x)j �
����y0 + Z x

x0

f(t; 'n�1(t))dt � y0 �
Z x

x0

f(t; '�(t))dt

���� pour tout n = 1; 2; :::; n

�
Z x

x0

��f(t; 'n�1(t))� f(t; '�(t))�� dt
� k

Z x

x0

��'n�1(t)� '�(t)�� dt
Pour n = 1 :

j'0(x)� '�(x)j �
Z x

x0

f(t; '�(t))dt

� M jx� x0j

Pour n = 2 :

j'1(x)� '�(x)j � k

Z x

x0

j'0(t)� '�(t)j dt

� kM
jx� x0j2

2

Par récurrence, on trouve que pour tout n 2 N�

j'n(x)� '�(x)j � kn�1M
jx� x0jn

n!

� M

k

(k jx� x0j)n

n!
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3.2. Application aux équations di¤érentielles

converge vers 0 quand n tend vers +1 quelque soit x 2 [x0 � h; x0 + h] :
En�n, j'n(x)� '�(x)j converge vers 0 quand n tend vers +1 donc '(x) � '�(x) = 0,

alors '(x) = '�(x):

Exemple 3.2.1 Soit le problème de Cauchy suivant:8<: y0 = f(x; y) = 2x(1 + y)

y(0) = 0

Ce problème est équivalent à l�équation intégrale

y(x) = y0 +

Z x

x0

f(t; y(t))dt; avec (x0; y0) = (0; 0)

Soit la suite de récurrence dé�nie par:

'0 = y0 = 0; 'n(x) = y0 +

Z x

x0

f(t; 'n�1(t))dt

Donc pour n = 1

'1(x) = y0 +

Z x

x0

f(t; '0(t))dt

=

Z x

0

f(t; 0)dt

=

Z x

0

2tdt

=
�
t2
�x
0

= x2

Pour n = 2

'2(x) = y0 +

Z x

x0

f(t; '1(t))dt

=

Z x

0

f(t; t2)dt

=

Z x

0

2t(1 + t2)dt

=

�
t2 +

t4

2

�x
0

= x2 +
x4

2
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3.2. Application aux équations di¤érentielles

Pour n = 3

'3(x) = y0 +

Z x

x0

f(t; '2(t))dt

=

Z x

0

f(t; t2 +
t4

2
)dt

=

Z x

0

2t(t2 +
t4

2
)dt

=

�
t4

2
+
t6

6

�x
0

=
x4

2
+
x6

6

:::

:::

:::

'n(x) =

Z x

x0

f(t; 'n�1(t))dt =
nX
k=1

(x2)
k

k!

On étudie la convergence. On a:

f(x; y) = 2x(1 + y)

Soit (x; y1); (x; y2) 2 D(f)

jf(x; y1)� f(x; y2)j = j2x(1 + y1)� 2x(1 + y2)j

= j2x(y1 � y2)j

� j2xj jy1 � y2j

� k jy1 � y2j

Choisissons un domaine borné de R2

D =
�
(x; y) 2 R2 = jxj < a; jyj < b = a; b 2 R
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3.3. Résolution des systèmes linéaires

On peut appliquer le théorème de Cauchy-Picard sur cet intervalle, alors k = 2a et la suite

('n) est convergente uniformément.

'n(x) =
nX
k=1

(x2)
k

k!

=

nX
k=0

(x2)
k

k!
� 1

= exp
�
x2
�
� 1

quand n tend vers +1.
Solution exacte

y0 = 2x(1 + y) =) y0

1 + y
= 2x =) y = c exp

�
x2
�
� 1

Nous avons

y(0) = 0 =) c� 1 = 0 =) c = 1

Alors

y = exp
�
x2
�
� 1

3.3 Résolution des systèmes linéaires

[15] On se propose de résoudre le système linéaire:

A:x = B

n équations et n inconnues (A est une matrice carrée n�n donnée, B une matrice colonne

donnée, X est la matrice colonne cherchée)

Posons M = I � A , ou I est la matrice unité, et:

f (x) =Mx+B:

La résolution de Ax = B est équivalente à la recherche d�un point �xe de f , en e¤et:

f (x) = x (3.3.1)
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3.3. Résolution des systèmes linéaires

(3:3:1) , Mx+B = x

(3:3:1) , (I � A)x+B = x

(3:3:1) , x� Ax+B = x

(3:3:1) , Ax = B

Bien entendu, le fait que f soit ou bien ne soit pas une contraction stricte va dépendre

du choix de la distance qu�on mettra sur Rn(ou Cn):

Pour x = (�1; :::; �n)ety = (�1; :::; �n), prenons d�abord sur Rn la distance d1(x; y) =

max j�i � �ij. Notons: M = (ai;j)1�i;j�n.

On a:

d1 jf (x) ; f (y)j = d1 (Mx+B;My +B)

= max
1�i�n

jM:(x� y)ij

= max
1�i�n

�����
nX
j=1

ai;j
�
�j � �j

������
� max

1�i�n

 
nX
j=1

jai;jj :
���j � �j��

!

� max
1�i�n

 
nX
j=1

jai;jj
!
: max
1�j�n

���j � �j��
= max

1�i�n

 
nX
j=1

jai;jj
!
:d1(x; y)

Et donc f sera une contraction stricte lorsque M = I � A véri�e :

jjM jj1;1 = max
1�i�n

 
nX
j=1

jai;jj
!
< 1

On véri�er que si l�on prend sur Rn la distance d1(x; y) =
Pn

i=1 j�i � �ij, on tombe sur
la condition su�sant:

jjM jj1;1 = max
1�j�n

 
nX
i=1

jai;jj
!
< 1

et en �n que si l�on prend d2(x; y) =
�Pn

i=1 j�i � �ij
2� 12 . On tombe sur la condition:

jjM jj2;2 =
nX
i=1

nX
j=1

jai;jj2 < 1:
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3.3. Résolution des systèmes linéaires

3.3.1 Méthodes itératives pour la résolution des systèmes linéaires

On va voir un type de méthodes itératives de résolution du systéme linéaire: Ax = b sous

la forme: 8<: x(0) vecteur arbitraire

x(k+1) = Bx(k) + c; k � 0
(3.3.2)

Lorsque

Ax = b () x = Bx+ c

La matrice B et le vecteur c sont en fonction de A et b.

Dé�nition 3.3.1 La méthode itérative (3:3:2) est convergente si

lim
k!+1

x(k) = x; 8x(0)

Remarque 3.3.1 [12] Si on pose e(k) = x(k) � x pour k 2 N; comme x = bx + c et

x(k+1) = bx(k) + c; on a

e(k) = Bx(k�1) �Bx = Be(k�1) = ::: = Bke(0)

lim
k!+1

x(k) = x () lim
k!+1

e(k) = 0 () lim
k!+1

Bke(0) = 0

Donc La méthode itérative (3:3:2) est convergente si

lim
k!+1

Bkv = 0; 8v

Ce qui équivaut à

lim
k!+1



Bkv

 = 0; 8v
Pour toute norme vectorielle k:k :

Convergence des méthodes itératives

Théorème 3.3.1 [12] Les propositions suivantes sont équivalentes:

1) La méthode itérative (3:3:2) est convergente.

2) �(B) < 1; (�(B) : le rayon spéctral d�une matrice B ):

3) kBk = 1 pour au moins une norme matricielle subordonné k:k :
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3.3. Résolution des systèmes linéaires

Démonstration.

(1) =) (2) Supposons �(B) � 1, �(B) = j�j donc existe un vecteur p : p 6= 0;

Bp = �pet j�j � 1 =) 8k � 0;


Bkp

 = 

�kp

 = ���k�� : kpk = j�jk : kpk � kpk

Ce qui contredit lim
k!+1

Bkp = 0:

(2) =) (3) Il existe au moins ume norme matricielle subordonné telle que:

kBk � �(B) + "

(3) =) (1) Soit k:k une norme matricielle subordonné. On utilise alors la propriété:

8k � 0; 8v;


Bkv

 � 

Bk

 : kvk � kBkk : kvk

kBk < 1 =) lim
k!+1



Bk

 = 0 =) lim
k!+1



Bkv

 = 0

Méthodes itératives

[12] Ces méthodes sont des cas particuliers de la méthode:

A =M �N avec M inversible et assez simple. On aurait alors:

Ax = b (3.3.3)

(3:3:3) () (M �N)x = b

(3:3:3) () Mx = Nx+ b

(3:3:3) () x =M�1Nx+M�1b

(3:3:3) () x = Bx+ c

Avec B =M�1N et c = M�1b.
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3.3. Résolution des systèmes linéaires

Méthode de Jacobi

[12] En posant A = D � (E + F ) ;M = D est la diagonale de A et N = E + F .

Ax = b () Dx = (E + F )x+ b

On suppose que D est inversible, c�est dire aii 6= 0; 1 � i � n
la matrice

J = D�1(E + F ) = In +D
�1A (3.3.4)

est appelée la matrice de Jacobi.8<: x(0) donné,

Dx(k+1) = (E + F )x(k) + b; k � 0
(3.3.5)

A chaque étape, on calcule les n composantes8>>>>>><>>>>>>:

a11x
(k+1)
1 = a12x

(k)
2 � :::� a1nx(k)n + b1

a22x
(k+1)
2 = a21x

(k)
1 � a23x(k)3 � :::� a2nx(k)n + b2

...

annx
(k+1)
n = an1x

(k)
1 � :::� ann�1x(k)n�1 + bn

(3.3.6)

Exemple 3.3.1 On utilise la méthode de Jacobi pour résoudre le système suivante:

0BBBBB@
5 2 1 1

2 6 2 1

1 2 7 2

1 1 2 8

1CCCCCA

0BBBBB@
x1

x2

x3

x4

1CCCCCA =

0BBBBB@
29

31

26

19

1CCCCCA ; et x(0) =

0BBBBB@
0

0

0

0

1CCCCCA

On obtient: x(5) =

0BBBBB@
3:950

3:074

2:019

1:036

1CCCCCA ; x(10) =
0BBBBB@
3:9956

3:0035

1:9985

1:0003

1CCCCCA ; x(15) =
0BBBBB@
3:99973

3:00026

1:99992

1:00005

1CCCCCA
La solution approche coneverge vers la solution exacte x =

�
4 3 2 1

�T
:
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3.4. Approche numérique du théorème du point �xe

3.4 Approche numérique du théorème du point �xe

Dans ce qui suit, on étudie une application du théorème du point �xe en faisant appel à une

méthode itérative convergente .

Soit f : E ! Hn,n 2 N H compact

x (x1; x2; :::; xn) 2 E ! f (x) = (f1(x); f2(x); :::; fn(x))

On impose les conditions suivantes sur E et f :

E est ensemble fermé de Hn.

f est une application contractante sur E:

90 � K � 1 tel que 8x; y 2 E; jjf(x)� f(y)jj � K jjx� yjj

jj:jj est une norme quelconque dans Hn S est stable par f : f(E) � f(E)

Théorème 3.4.1 [14] Soit E est une partie fermé de Hn;est f une application dé�nie sur

E et à valeur dans E , constante sur E ,telle que x 2 E ! f(x) 2 E. Alors admet

un unique point �xe x�dans E.Ce point �xe est calculable comme limite de la suite des

approximations successives (xl)l�0 :8<: x0 2 E quelconque

xl+1 = f(x1); l 2 N
(3.4.1)

Pour tout indice l 2 N� ; on a les inégalités de majoration d�erreur suivantes:8<: jjxl � x�jj � Kl

1�K jjxl � x0jj
jjxl � x�jj � 1

1�K jjxl+1 � xljj
(3.4.2)

Remarque 3.4.1 Ce théorème reste vrai dans le cadre générale d�un espace vectoriel quel-

conque (de dimension in�nie ) à condition qu�il soit complet pour la norme en question.

Voici un exemple où est mis en oeuvre le procédé itératif précédent.

Exemple 3.4.1 calcul de la racine carrée d�un nombre positif

Soit c 2 R�+ un nombre positif. Le théorème du point �xe précédent va nous permettre de
développer une méthode de calcul de

p
c et justi�er sa convergence. Pour c 2 R�+ soit

f(x) =
1

2
(x+

c

x
)
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3.4. Approche numérique du théorème du point �xe

Calculons f 0 et f 00

f 0(x) =
1

2
� c

2x
=
1

2

x2 � c
x2

et seconde: f 00(x) =
c

x3

On déduit que f 0 s�annule dans un seul point
p
c, que f 0(x) est négative sur ]0;

p
c[ ; positif

sur [
p
c;1[ ;avec décroissance de f sur ]0;

p
c] puis croissance sur [

p
c;1[ :Par ailleurs, on

remarque que
p
c est point �xe de f : f(

p
c) = 1

2
(
p
c+ cp

c
) =

p
c.

Sur I = [
p
c;1[ la dérivée véri�e 0 � f 0(x) � 1

2
, il en découle que f est contractante sur

l�intervalle [
p
c;1[ de constante � = 1

2
. En e¤et 8x1; x2 2 I on a

jf(x1)� f(x2)j = j(x1 � x2) f 0(�)j avec � 2 ]x1; x2[

Selon le théorème des acroissements �nit. D�où l�inégalité :

jf(x1)� f(x2)j �
1

2
jx1 � x2j 8x1; x2 2 I
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3.4. Approche numérique du théorème du point �xe

Exemple 3.4.2 D�aprés le graphe de f on a l�inclusion f(]0;+1[) � I. On peut donc

appliquer le théorème du point �xe sur l�intervalle fermé I: il existe un unique point �xe sur

I pour f (c�est
p
c) qu�on peut déterminer par:

8yl 2 I ; yl +1 = f(yl) =
1

2
(yl +

c

yl
); l � 1

De plus pour l � 2 on a l�inégalité:

jyl � cj �
(0:5)l�1

1� 0:5 jy2 � y1j = (0:5)
l�2 jy2 � y1j

Par ailleurs, si on prend x0 quelconque dans ]0;+1[ alors les termes yl +1 = f(yl) pour

l � 0 restent dans I et la suite (xl)l�0 converge vers
p
c d�après ce qui précède et l�inégalité

de majoration d�erreur s�écrit alors, toujour pour l � 2,

jxl � cj � (0:5)l�2 jx2 � x1j

Par exemple pour c = 2 on a, en partant de x0 = 1 :

x1 = 1:5

x2 = 1:4166:::

x3 = 1:41421568274:::

x4 = 1:414213562374:::

x5 = 1:414213562373:::

On constate que la covergence vers
p
2 = 1:4142135623731::: est trés rapide et on véri�e

bien l�inégalité de majoration d�erreur donnée plus haut:���x5 �p2��� 10�3 � 0:53 jx2 � x1j 0:01
Remarque 3.4.2 La touche pd�une calculatrice utilise ce même procédé itératif con-

vergeant pour déterminé la racine carrée d�un nombre positif quelque soit le point de départ

dans R�+:
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Conclusion

Le théorème du point �xe est un outil fondamental pour la résolution de plusieurs

problèmes d�analyse que ce soit théorique ou pratique.

Le but de ce travail est l�étude du théoréme du point �xe de Banach basé sur les applications

contractante dans un espace métrique et sa version dans espace vectoriel normé complet .

En basant sur la démonstration qui o¤re une méthode numérique pour la recherche de

solution approchée.

En terminant par les application analytique sur ce théorème plus des application algébrique

et numérique.
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Résumé 

Dans ce travail, nous proposons le théorème du point fixe 

de Banach, en référence à l'importance de leur démonstration 

qu'est l'approximations successives. Enfin, nous présentons 

différents modèles sur leurs applications en matière d'analyse 

mathématique, numérique et algébrique.     

    Mots-clés: espace métrique, suite de Cauchy, espace de 

Banach, application contractante, point fixe, approximation 

successive.   

Abstract  

 In this work , we have  proposed the Banach fixed point 

theorem, with reference to the importance of their 

demonstration which is successive approximation , finally we 

have consider different models of fixed point applications in  

mathematical analysis material, numerical and algebraic.  

   Key words:  metric space, sequence Cauchy, Banach space, 

contracting application, fixed point, successive approximation. 

 الملخص 
همية برهانها أقمنا في هذا العمل بتقديم نظرية النقطة الصامدة لبناخ مع الاشارة الى 

و في الاخير قدمنا نماذج مختلفة حول تطبيقاتها فيما يخص  .ةالمتمثل في التقريبات المتتالي
 . العددي و الجبري  الرياضي،التحليل 

النقطة , التطبيق المقلص, فضاء بناخ, متتالية كوشي, فضاء متري :الكلمات المفتاحية

  .  التقريبات المتتالية, الصامدة
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